Подготовительный этап дыхания протекает в. Этапы клеточного дыхания

1. Клеточное дыхание относится к процессам ассимиляции или диссимиляции? Почему?

Клеточное дыхание относится к диссимиляции, потому что в ходе этого процесса происходит:

● расщепление сложных органических соединений до более простых веществ;

● высвобождение энергии химических связей расщепляемых соединений.

2. Что представляет собой процесс клеточного дыхания? Откуда берётся энергия для синтеза АТФ в процессе клеточного дыхания?

Клеточное дыхание – сложный многостадийный процесс, в ходе которого происходит расщепление органических веществ (в конечном итоге – до простейших неорганических соединений), а высвобождающаяся энергия их химических связей запасается и затем используется клеткой.

Энергия для синтеза АТФ выделяется (высвобождается) в результате разрыва химических связей в молекулах расщепляемых веществ.

3. Перечислите этапы клеточного дыхания. Какие из них сопровождаются синтезом АТФ? Какое количество АТФ (в расчёте на 1 моль глюкозы) может образоваться в ходе каждого этапа?

Выделяют следующие этапы клеточного (аэробного) дыхания: подготовительный, бескислородный (гликолиз, если расщепляется глюкоза) и кислородный (аэробный).

В ходе подготовительного этапа АТФ не синтезируется. В результате гликолиза может синтезироваться 2 моль АТФ (на каждый моль расщеплённой глюкозы). Энергетический выход кислородного этапа – 36 моль АТФ (в расчёте на 1 моль глюкозы).

4. Где осуществляется гликолиз? Какие вещества необходимы для протекания гликолиза? Какие конечные продукты при этом образуются?

Гликолиз – многоступенчатый процесс бескислородного расщепления глюкозы до пировиноградной кислоты. Реакции гликолиза протекают в цитоплазме клеток.

Для протекания гликолиза необходимо наличие глюкозы (С 6 Н 12 О 6), специального набора ферментов (каждая стадия гликолиза катализируется особым ферментом), окисленного НАД (НАД +), а также АДФ и Н 3 РО 4 (для синтеза АТФ).

Конечные продукты гликолиза: пировиноградная кислота, или ПВК (С 3 Н 4 О 3), восстановленный НАД (НАД Н+Н +) и АТФ. В расчёте на 1 моль глюкозы образуется по 2 моль ПВК и восстановленного НАД, синтезируется 2 моль АТФ. Суммарное уравнение гликолиза:

5. В каких органоидах происходит кислородный этап клеточного дыхания? Какие вещества вступают в этот этап? Какие продукты образуются?

Кислородный этап клеточного дыхания протекает в митохондриях. В этот этап вступают ПВК и восстановленный НАД (продукты гликолиза, предшествующего кислородному этапу). Кроме того, для осуществления кислородного этапа необходимо поступление в митохондрии молекулярного кислорода (О 2), наличие особых ферментов и других веществ.

ПВК поступает в матрикс митохондрий, где полностью расщепляется и окисляется до конечных продуктов – СО 2 и Н 2 О. Восстановленный НАД также поступает в митохондрии, где подвергается окислению. В ходе аэробного этапа дыхания потребляется кислород и синтезируются 36 молекул АТФ (в расчёте на 2 молекулы ПВК). СО 2 выделяется из митохондрий в гиалоплазму клетки, а затем в окружающую среду. Суммарное уравнение кислородного этапа дыхания:

6. В подготовительный этап клеточного дыхания вступает 81 г гликогена. Какое максимальное количество АТФ (моль) может синтезироваться в результате последующего гликолиза? В ходе аэробного этапа дыхания?

● В ходе подготовительного этапа происходит гидролиз гликогена с образованием глюкозы:

(С 6 Н 10 О 5) n + nH 2 O → nC 6 H 12 O 6

● Найдём молярную массу остатка глюкозы в составе гликогена:

М (С 6 Н 10 О 5) = 12 × 6 + 1 × 10 + 16 × 5 = 162 г/моль.

● Найдём химическое количество остатков глюкозы в составе гликогена массой 81 г:

n (С 6 Н 10 О 5) = m: М = 81 г: 162 г/моль = 0,5 моль. Следовательно, в результате подготовительного этапа образовалось 0,5 моль глюкозы.

● Суммарное уравнение гликолиза:

C 6 H 12 O 6 + 2НАД + + 2АДФ + 2H 3 PO 4 → 2C 3 H 4 O 3 + 2НАД Н+Н + + 2АТФ

При гликолизе расщепление 1 моль глюкозы сопровождается образованием 2 моль ПВК и синтезом 2 моль АТФ. Значит, при расщеплении 0,5 моль глюкозы образуется 1 моль ПВК и может синтезироваться 1 моль АТФ.

● Суммарное уравнение кислородного этапа дыхания:

2С 3 Н 4 О 3 + 6О 2 + 2НАД Н+Н + + 36АДФ + 36Н 3 РО 4 → 6СО 2 + 6Н 2 О + 2НАД + + 36АТФ

Аэробное расщепление 2 моль ПВК приводит к синтезу 36 моль АТФ. Поэтому при расщеплении 1 моль ПВК может синтезироваться 18 моль АТФ.

Ответ: в результате гликолиза может синтезироваться 1 моль АТФ, а в результате последующего аэробного этапа дыхания – ещё 18 моль АТФ.

7. Почему расщепление органических соединений при участии кислорода энергетически более эффективно, чем при его отсутствии?

Потому что кислород является сильным окислителем. Под действием кислорода происходит полное расщепление и окисление органических веществ (в частности, углеводов и жиров – до Н 2 О и СО 2) с высвобождением большого количества энергии, заключённой в химических связях расщепляемых органических веществ. При отсутствии кислорода не происходит полного окисления органических веществ, поэтому значительная часть энергии остаётся в конечных продуктах.

Если рассматривать механизм аэробного этапа клеточного дыхания более глубоко, то можно отметить, что молекулярный кислород, принимая электроны, образует анионы О 2– . Анионы кислорода необходимы для связывания протонов (Н +), поступающих через каналы АТФ-синтетазы в матрикс митохондрии. При отсутствии кислорода происходит накопление протонов в матриксе, что ведёт к торможению, а затем и к прекращению работы АТФ-синтетазы. Следовательно, непрерывное поступление кислорода в митохондрии необходимо для нормальной работы АТФ-синтетазы (т.е. для синтеза АТФ).

8*. Длина митохондрий колеблется от 1 до 60 мкм, а ширина - в пределах 0,25–1 мкм. Почему при столь значительных различиях в длине митохондрий их ширина относительно невелика и сравнительно постоянна?

Благодаря тому, что ширина митохондрий сравнительно невелика, процессы диффузии метаболитов из окружающей гиалоплазмы в матрикс (ПВК, О 2 , НАД Н+Н + , АДФ, Н 3 РО 4) и в обратном направлении (АТФ, СО 2 и др.) осуществляются очень быстро. Увеличение ширины митохондрий привело бы к замедлению транспорта метаболитов и снижению интенсивности кислородного этапа клеточного дыхания.

* Задания, отмеченные звёздочкой, предполагают выдвижение учащимися различных гипотез. Поэтому при выставлении отметки учителю следует ориентироваться не только на ответ, приведённый здесь, а принимать во внимание каждую гипотезу, оценивая биологическое мышление учащихся, логику их рассуждений, оригинальность идей и т. д. После этого целесообразно ознакомить учащихся с приведённым ответом.


Основными процессами, обеспечивающими клетку энергией, являются фотосинтез, хемосинтез, дыхание, брожение и гликолиз как этап дыхания.
С кровью кислород проникает в клетку, вернее в особые клеточные структуры – митохондрии. Они есть во всех клетках, за исключением клеток бактерий, сине-зеленых водорослей и зрелых клеток крови (эритроцитов). В митохондриях кислород вступает в многоступенчатую реакцию с различными питательными веществами – белками, углеводами, жирами и др. Этот процесс называется клеточным дыханием. В результате выделяется химическая энергия, которую клетка запасает в особом веществе – аденозинтрифосфорной кислоте, или АТФ. Это универсальный накопитель энергии, которую организм тратит на рост, движение, поддержание своей жизнедеятельности.

Дыхание – это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.


Дыхание, в отличие от горения, процесс многоступенчатый. В нем выделяют две основные стадии: гликолиз и кислородный этап.

Гликолиз

Драгоценная для организма АТФ образуется не только в митохондриях, но и в цитоплазме клетки в результате гликолиза (от греч. «гликис» - «сладкий» и «лисис» – «распад»). Гликолиз не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета.
Гликолиз – процесс очень сложный. Это процесс расщепления глюкозы под действием различных ферментов, который не требует участия кислорода. Для распада и частичного окисления молекулы глюкозы необходимо согласованное протекание одиннадцати последовательных реакций. При гликолизе одна молекула глюкозы дает возможность синтезировать две молекулы АТФ. Продукты расщепления глюкозы могут затем вступать в реакцию брожения, превращаясь в этиловый спирт или молочную кислоту. Спиртовое брожение свойственно дрожжам, а молочнокислое – свойственно клеткам животных и некоторых бактерий. Многим аэробным, т.е. живущим исключительно в бес кислородной среде, организмам хватает энергии, образующейся в результате гликолиза и брожения. Но аэробным организмам необходимо дополнить этот небольшой запас, причем весьма существенно.

Кислородный этап дыхания

Продукты расщепления глюкозы попадают в митохондрию. Там от них сначала отщепляется молекула углекислого газа, который выводится из организма при выходе. «Дожигание» происходит в так называемом цикле Кребса (приложение №1) (по имени описавшего его английского биохимика) – последовательной цепи реакций. Каждый из участвующих в ней ферментов вступает в соединения, а после нескольких превращений вновь освобождается в первоначальном виде. Биохимический цикл вовсе не бесцельное хождение по кругу. Он больше схож с паромом, который снует между двумя берегами, но в итоге люди и машины движутся в нужном направлении. В результате совершающихся в цикле Кребса реакций синтезируются дополнительные молекулы АТФ, отщепляются дополнительные молекулы углекислого газа и атомы водорода.
Жиры тоже участвуют в этой цепочке, но их расщепление требует времени, поэтому если энергия нужна срочно, то организм использует не жиры, а углеводы. Зато жиры – очень богатый источник энергии. Могут окислятся для энергетических нужд и белки, но лишь в крайнем случае, например при длительном голодании. Белки для клетки – неприкосновенный запас.
Главный по эффективности процесс синтеза АТФ происходит при участии кислорода в многоступенчатой дыхательной цепи. Кислород способен окислять многие органические соединения и при этом выделять много энергии сразу. Но такой взрыв для организма был бы губителен. Роль дыхательной цепи и всего аэробного, т.е. связанного с кислородом, дыхания состоит именно в том, чтобы организм обеспечивался энергией непрерывно и небольшими порциями – в той мере, в какой мере это организму нужно. Можно провести аналогию с бензином: разлитый по земле и подожженный, он мгновенно вспыхнет без всякой пользы. А в автомобиле, сгорая понемногу, бензин будет несколько часов совершать полезную работу. Но для этого такое сложное устройство, как двигатель.

Дыхательная цепь в совокупности с циклом Кребса и гликолизом позволяет довести «выход» молекул АТФ с каждой молекулы глюкозы до 38. А ведь при гликолизе это соотношение было лишь 2:1. Таким образом, коэффициент полезного действия аэробного дыхания намного больше.
Механизм синтеза АТФ при гликолизе относительно прост и может без труда быть воспроизведен в пробирке. Однако никогда не удавалось лабораторно смоделировать дыхательный синтез АТФ. В 1961 году английский биохимик Питер Митчел высказал предположение, что ферменты– соседи по дыхательной цепи –соблюдают не только строгую очередность, но и четкий порядок в пространстве клетки. Дыхательная цепь, не меняя своего порядка, закрепляется во внутренней оболочке (мембране) митохондрии и несколько раз“прошивает”ее будто стежками. Попытки воспроизвести дыхательный синтез АТФ потерпели неудачу, потому что роль мембраны исследователями недооценивались. А ведь в реакции участвуют еще ферменты, сосредоточенные в грибовидных наростах на внутренней стороне мембраны. Если эти наросты удалить, то АТФ синтезироваться не будет.

В процессе дыхания образуется огромное количество энергии. Если вся она выделилась бы сразу, то клетка перестала бы существовать. Но этого не происходит, потому что энергия выделяется не вся сразу, а ступенчато, небольшими порциями. Выделение энергии небольшими дозами обусловлено тем, что дыхание представляет собой многоступенчатый процесс, на отдельных этапах которого образуются различные промежуточные продукты (с разной длиной углеродной цепочки) и выделяется энергия. Выделяющаяся энергия не расходуется в виде тепла, а запасается в универсальном макроэргическом соединении - АТФ. При расщеплении АТФ энергия может использоваться в любых процессах, необходимых для поддержания жизнедеятельности организма: на синтез различных органических веществ, механическую работу, поддержание осмотического давления протоплазмы и т. д.

Дыхание является процессом, дающим энергию, однако его биологическое значение этим не ограничивается. В результате химических реакций, сопровождающих дыхание, образуется большое количество промежуточных соединений. Из этих соединений, имеющих различное количество углеродных атомов, могут синтезироваться самые разнообразные вещества клетки: аминокислоты, жирные кислоты, жиры, белки, витамины.

Поэтому обмен углеводов определяет остальные обмены веществ (белков, жиров). В этом его огромное значение.

С процессом дыхания, его химическими реакциями связано одно из удивительных свойств микробов - способность испускать видимый свет - люминесцировать.

Известно, что ряд живых организмов, в том числе бактерии, могут испускать видимый свет. Люминесценция, вызываемая микроорганизмами, известна уже в течение столетий. Скопление люминесцирующих бактерий, находящихся в симбиозе с мелкими морскими животными, иногда приводит к свечению моря; с люминесценцией встречались также при росте некоторых бактерий на мясе и т. д.

К основным компонентам, взаимодействие между которыми приводит к испусканию света, относятся восстановленные формы ФМН или НАД, молекулярный кислород, фермент люцифераэа и окисляемое соединение - люциферин. Предполагается, что восстановленные НАД или ФМН реагируют с люциферазой, кислородом и люциферином, в результате чего электроны в некоторых молекулах переходят в возбужденное состояние и возвращение этих электронов на основной уровень сопровождается испусканием света. Люминесценцию у микробов рассматривают как «расточительный процесс», так как при этом энергетическая эффективность дыхания снижается.



В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз

Гликолиз - путь ферментативного расщепления глюкозы - является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением . Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода .

Первый его этап протекает с высвобождением 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата . На втором этапе происходит НАД -зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием , то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ .

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД + + 4АДФ + 2АТФ + 2Ф н = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H 2 O + 4Н + .

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД + + 2АДФ + 2Ф н = 2НАД∙Н + 2ПВК + 2АТФ + 2H 2 O + 4Н + .

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид , который вместе с Коферментом А образует Ацетил-КоА . Реакция сопровождается восстановлением НАД до НАД∙Н .

У эукариот процесс протекает в матриксе митохондрий .

β-окисление жирных кислот

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД + + ФАД + ГДФ + Ф н + 2H 2 O + КоА-SH = 2КоА-SH + 3НАДH + 3H + + ФАДН 2 + ГТФ + 2CO 2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН 2 , восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот - в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал . Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН 2 - 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород .

Анаэробное дыхание

Общее уравнение дыхания, баланс АТФ

Стадия Выход кофермента Выход АТФ (ГТФ) Способ получения АТФ
Первая фаза гликолиза −2 Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза 4 Субстратное фосфорилирование
2 НАДН 3 (5) Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ.
Декарбоксилирование пирувата 2 НАДН 5 Окислительное фосфорилирование
Цикл Кребса 2 Субстратное фосфорилирование
6 НАДН 15 Окислительное фосфорилирование
2 ФАДН 2 3 Окислительное фосфорилирование
Общий выход 30 (32) АТФ При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

См. также

Напишите отзыв о статье "Клеточное дыхание"

Примечания

Отрывок, характеризующий Клеточное дыхание

Дни шли, а я не знала, была ли моя девочка всё ещё в Мэтэоре? Не появлялся ли за ней Караффа?.. И всё ли было с ней хорошо.
Моя жизнь была пустой и странной, если не сказать – безысходной. Я не могла покинуть Караффу, так как знала – стоит мне только исчезнуть, и он тут же выместит свою злость на моей бедной Анне... Также, я всё ещё не в силах была его уничтожить, ибо не находила пути к защите, которую подарил ему когда-то «чужой» человек. Время безжалостно утекало, и я всё сильнее чувствовала свою беспомощность, которая в паре с бездействием, начинала медленно сводить меня с ума...
Прошёл почти уже месяц после моего первого визита в подвалы. Рядом не было никого, с кем я могла бы обмолвиться хотя бы словом. Одиночество угнетало всё глубже, поселяя в сердце пустоту, остро приправленную отчаяньем...
Я очень надеялась, что Мороне всё-таки выжил, несмотря на «таланты» Папы. Но возвращаться в подвалы побаивалась, так как не была уверена, находился ли там всё ещё несчастный кардинал. Мой повторный визит мог навлечь на него настоящую злобу Караффы, и платить за это Мороне пришлось бы по-настоящему дорого.
Оставаясь отгороженной от любого общения, я проводила дни в полнейшей «тишине одиночества». Пока, наконец, не выдержав более, снова спустилась в подвал...
Комната, в которой я месяц назад нашла Мороне, на этот раз пустовала. Оставалось только надеяться, что отважный кардинал всё ещё жил. И я искренне желала ему удачи, которой узникам Караффы, к сожалению, явно не доставало.
И так как я всё равно уже находилась в подвале, то, чуть подумав, решила посмотреть его дальше, и осторожно открыла следующую дверь....
А там, на каком-то жутком пыточном «инструменте» лежала совершенно голая, окровавленная молодая девушка, тело которой представляло собою настоящую смесь живого палёного мяса, порезов и крови, покрывавших её всю с головы до ног... Ни палача, ни, тем более – Караффы, на моё счастье, в комнате пыток не было.
Я тихонько подошла к несчастной и осторожно погладила её по опухшей, нежной щеке. Девушка застонала. Тогда, бережно взяв её хрупкие пальцы в свою ладонь, я медленно начала её «лечить»... Вскоре на меня удивлённо глядели чистые, серые глаза...
– Тихо, милая... Лежи тихо. Я попробую тебе помочь, насколько это возможно. Но я не знаю, достаточно ли у меня будет времени... Тебя очень сильно мучили, и я не уверена, смогу ли всё это быстро «залатать». Расслабься, моя хорошая, и попробуй вспомнить что-то доброе... если сможешь.
Девушка (она оказалась совсем ещё ребёнком) застонала, пытаясь что-то сказать, но слова почему-то не получались. Она мычала, не в состоянии произнести чётко даже самого краткого слова. И тут меня полоснуло жуткое понимание – у этой несчастной не было языка!!! Они его вырвали... чтобы не говорила лишнего! Чтобы не крикнула правду, когда будут сжигать на костре... Чтобы не могла сказать, что они с ней творили...
О боже!.. Неужели всё это вершили ЛЮДИ???
Чуть успокоив своё омертвевшее сердце, я попыталась обратиться к ней мысленно – девочка услышала. Что означало – она была одарённой!.. Одной из тех, кого Папа так яростно ненавидел. И кого так зверски сжигал живьём на своих ужасающих человеческих кострах....
– Что же они с тобой сделали, милая?!.. За что тебе отняли речь?!
Стараясь затянуть повыше упавшее с её тела грубое рубище непослушными, дрожащими руками, потрясённо шептала я.
– Не бойся ничего, моя хорошая, просто подумай, что ты хотела бы сказать, и я постараюсь услышать тебя. Как тебя зовут, девочка?
– Дамиана... – тихо прошелестел ответ.
– Держись, Дамиана, – как можно ласковее улыбнулась я. – Держись, не ускользай, я постараюсь помочь тебе!
Но девушка лишь медленно качнула головой, а по её избитой щеке скатилась чистая одинокая слезинка...
– Благодарю вас... за добро. Но я не жилец уже... – прошелестел в ответ её тихий «мысленный» голос. – Помогите мне... Помогите мне «уйти». Пожалуйста... Я не могу больше терпеть... Они скоро вернутся... Прошу вас! Они осквернили меня... Пожалуйста, помогите мне «уйти»... Вы ведь знаете – как. Помогите... Я буду и «там» благодарить, и помнить вас...
Она схватила своими тонкими, изуродованными пыткой пальцами моё запястье, вцепившись в него мёртвой хваткой, будто точно знала – я и вправду могла ей помочь... могла подарить желанный покой...
Острая боль скрутила моё уставшее сердце... Эта милая, зверски замученная девочка, почти ребёнок, как милости, просила у меня смерти!!! Палачи не только изранили её хрупкое тело – они осквернили её чистую душу, вместе изнасиловав её!.. И теперь, Дамиана готова была «уйти». Она просила смерти, как избавления, даже на мгновение, не думая о спасении. Она была замученной и осквернённой, и не желала жить... У меня перед глазами возникла Анна... Боже, неужели и её ждал такой же страшный конец?!! Смогу ли я её спасти от этого кошмара?!
Дамиана умоляюще смотрела на меня своими чистыми серыми глазами, в которых отражалась нечеловечески глубокая, дикая по своей силе, боль... Она не могла более бороться. У неё не хватало на это сил. И чтобы не предавать себя, она предпочитала уйти...
Что же это были за «люди», творившие такую жестокость?!. Что за изверги топтали нашу чистую Землю, оскверняя её своей подлостью и «чёрной» душой?.. Я тихо плакала, гладя милое лицо этой мужественной, несчастной девчушки, так и не дожившей даже малой частью свою грустную, неудавшуюся жизнь... И мою душу сжигала ненависть! Ненависть к извергу, звавшему себя римским Папой... наместником Бога... и святейшим Отцом... наслаждавшимся своей прогнившей властью и богатством, в то время, как в его же жутком подвале из жизни уходила чудесная чистая душа. Уходила по собственному желанию... Так как не могла больше вынести запредельную боль, причиняемую ей по приказу того же «святого» Папы...
О, как же я ненавидела его!!!.. Всем сердцем, всей душой ненавидела! И знала, что отомщу ему, чего бы мне это ни стоило. За всех, кто так зверски погиб по его приказу... За отца... за Джироламо... за эту добрую, чистую девочку... и за всех остальных, у кого он играючи отнимал возможность прожить их дорогую и единственную в этом теле, земную жизнь.
– Я помогу тебе, девочка... Помогу тебе милая... – ласково баюкая её, тихо шептала я. – Успокойся, солнышко, там не будет больше боли. Мой отец ушёл туда... Я говорила с ним. Там только свет и покой... Расслабься, моя хорошая... Я исполню твоё желание. Сейчас ты будешь уходить – не бойся. Ты ничего не почувствуешь... Я помогу тебе, Дамиана. Я буду с тобой...
Из её изуродованного физического тела вышла удивительно красивая сущность. Она выглядела такой, какой Дамиана была, до того, как появилась в этом проклятом месте.
– Спасибо вам... – прошелестел её тихий голос. – Спасибо за добро... и за свободу. Я буду помнить вас.
Она начала плавно подниматься по светящемуся каналу.
– Прощай Дамиана... Пусть твоя новая жизнь будет счастливой и светлой! Ты ещё найдёшь своё счастье, девочка... И найдёшь хороших людей. Прощай...
Её сердце тихо остановилось... А исстрадавшаяся душа свободно улетала туда, где никто уже не мог причинять ей боли. Милая, добрая девочка ушла, так и не узнав, какой чудесной и радостной могла быть её оборванная, непрожитая жизнь... скольких хороших людей мог осчастливить её Дар... какой высокой и светлой могла быть её непознанная любовь... и как звонко и счастливо могли звучать голоса её не родившихся в этой жизни детей...
Успокоившееся в смерти лицо Дамианы разгладилось, и она казалась просто спящей, такой чистой и красивой была теперь... Горько рыдая, я опустилась на грубое сидение рядом с её опустевшим телом... Сердце стыло от горечи и обиды за её невинную, оборванную жизнь... А где-то очень глубоко в душе поднималась лютая ненависть, грозясь вырваться наружу, и смести с лица Земли весь этот преступный, ужасающий мир...

Проработав эти темы, Вы должны уметь:

  1. Охарактеризовать приведенные ниже понятия и объяснить соотношения между ними:
    • полимер, мономер;
    • углевод, моносахарид, дисахарид, полисахарид;
    • липид, жирная кислота, глицерин;
    • аминокислота, пептидная связь, белок;
    • катализатор, фермент, активный центр;
    • нуклеиновая кислота, нуклеотид.
  2. Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  3. Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  4. Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  5. Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  6. Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  7. Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  8. Сравнить дыхание и брожение.
  9. Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  10. Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  11. Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  12. Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  13. Перечислить этапы белкового синтеза на уровне рибосом.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК.

Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
АГТАЦЦГАТАЦТЦГАТТТАЦГ...
Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
ТАЦТГГЦТАТГАГЦТАААТГ...

Тип 2. Кодирование белков.

Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
АААЦАААЦУГЦГГЦУГЦГААГ

С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
АЦГЦЦЦАТГГЦЦГГТ...

По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
УГЦГГГУАЦЦГГЦЦА...

Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
Цистеин-глицин-тирозин-аргинин-пролин-...

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
  • Тема 5. "Фотосинтез." §16-17 стр. 44-48
  • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
  • Тема 7. "Генетическая информация." §14-15 стр. 39-44

метаболизм

Метаболизм – совокупность реакций биосинтеза и расщепления веществ в клетке. Определенная последовательность ферментативных превращений вещества в клетке называется метаболическим путем, а образующиеся промежуточные продукты – метаболиты.

Двумя взаимосвязанными в пространстве и времени сторонами метаболизма являются пластический и энергетический обмен.

Совокупность реакций биологического синтеза, когда из простых веществ, поступающих в клетку извне, образуются сложные органические вещества, подобные содержимому клетки, называется анаболизм (пластический обмен). Происходит ассимиляция. Эти реакции идут с использованием энергии, образующейся в результате реакций расщепления органических веществ, поступающих с пищей. Наиболее интенсивно пластический обмен происходит в процессе роста организма. Наиболее важные процессы анаболизма – фотосинтез и синтез белка.

Катаболизма (энергетический обмен) – ферментативные расщепления (гидролиз, окисление) сложных органических соединений на более простые. Происходит диссимиляция. Эти реакции идут с выделением энергии.

Этапы энергетического обмена. Клеточное дыхание.

Процессом, противоположным биосинтезу, является диссимиляция, или катаболизм, - совокупность реакций расщепления. При расщеплении высокомолекулярных соединений выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом клетки. Гетеротрофные организмы получают энергию, необходимую для жизнедеятельности с пищей. Химическая энергия питательных веществ заключена в различных ковалентных связях между атомами в молекуле органических соединений. Часть энергии, освобождаемая из питательных веществ, рассеивается в форме теплоты, а часть аккумулируется, т.е. накапливается в богатых энергией макроэргических фосфатных связях АТФ. Именно АТФ обеспечивает энергией все виды клеточных функций: биосинтез, механическую работу, активный перенос веществ через мембраны и т.д. Синтез АТФ осуществляется в митохондриях. Клеточное дыхание – ферментативное разложение органических веществ (глюкозы) в клетке до углекислого газа и воды в присутствии свободного кислорода, сопряженное с запасанием выделяющейся при этом энергии.

Энергетический обмен делят на тир этапа, каждый из которых осуществляется при участии специальных ферментов в определенных участках клеток.

    Первый этап – подготовительный. У человека и животных в процессе пищеварения крупные молекулы пищи, включающие олиго-, полисахариды, липиды, белки, нуклеиновые кислоты, распадаются на более мелкие молекулы – глюкозу, глицерин, жирные кислоты, аминокислоты, нуклеотиды. На этом этапе выделяется небольшое количество энергии, которая рассеивается в виде теплоты. Эти молекулы всасываются в кишечнике в кровь и доставляются в различные органы и ткани, где могут служить как строительным материалом для синтеза новых веществ, необходимых организму, так и для обеспечения организма энергией.

    Второй этап – бескислородный, или неполный, анаэробное дыхание (гликолиз или брожение). Образующиеся на этом этапе вещества при участии ферментов подвергаются дальнейшему расщеплению.

Гликолиз – один из центральных путей катаболизма глюкозы, когда расщепление углевода с образованием АТФ происходит в бескислородных условиях. У аэробных организмов (растения, животные) это одна из стадий клеточного дыхания, у микроорганизмов – брожение – основной способ получения энергии. Ферменты гликолиза локализованы в цитоплазмы. Процесс протекает в два этапа при отсутствии кислорода.

1). Подготовительный этап – происходит активирование молекул глюкозы в результате присоединения фосфатных групп, идущее с затратой АТФ, с образованием двух 3-углеродных молекул глицеральдегидфосфата.

2), окислительно-восстановительный этап – идут ферментативные реакции субстратного фосфорилирования, когда происходит извлечение энергии в виде АТФ непосредственно в момент окисления субстрата. Так, молекула глюкозы подвергается дальнейшему ступенчатому расщеплению и окислению до двух 3-углеродных молекул пировиноградной кислоты. В суммарной виде процесс гликолиза выглядит так:

С 6 Н 12 О 6 + 2 Н 3 РО 4 + 2 АДФ → 2 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 О

На этапе окисления глюкозы отщепляются протоны и электроны запасаются в форме НАДН. В мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы ПВК, которые затем восстанавливаются в молочную кислоту с использованием восстановленного НАДН. У дрожжевых грибов молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение):

С 6 Н 12 О 6 + 2 Н 3 РО 4 + 2 АДФ → 2 С 3 Н 5 ОН + 2 СО 2 + 2 АТФ + 2 Н 2 О

У других микроорганизмов расщепление глюкозы – гликолиз может завершаться образованием ацетона, уксусной кислоты и др.

Во всех случаях распад одной молекулы глюкозы сопровождается образованием 4 молекул АТФ. При этом в реакциях расщепления глюкозы 2 молекулы АТФ затрачиваются. Таким образом, в ходе бескислородного расщепления глюкозы образуется 2 молекулы АТФ. В целом энергетическая эффективность гликолиза невелика, т.к. 40% энергии сохраняется в виде химической связи в молекуле АТФ, а остальная энергия рассеивается в виде теплоты.

    Третий этап – стадия кислородного расщепления, или аэробного дыхания. Аэробное дыхание осуществляется в митохондриях клетки при доступе кислорода. Процесс клеточного дыхания также состоит из 3 этапов.

    Окислительное декарбоксилирование ПВК, образующейся на предыдущем этапе из глюкозы и поступающей в матрикс митохондрий. При участии сложного ферментного комплекса отщепляется молекула углекислого газа и образуется соединение ацетил-коэнзим А, а также НАДН.

    Цикл трикарбоновых кислот (Цикл Кребса). Этот этап включает большое число ферментативных реакций. Внутри матрикса митохондрий ацетил-коэнзим А (который может образовываться из различных веществ) расщепляется с высвобождением еще одной молекулы углекислого газа, а также образованием АТФ, НАДН и ФАДН. Углекислый газ поступает в кровь и удаляется из организма через органы дыхания. Энергия, запасенная в молекулах НАДН и ФАДН, используется для синтеза АТФ на следующем этапе клеточного дыхания.

    Окислительное фосфорилирование – многоступенчатый перенос электронов от восстановленных форм НАДН и ФАДН по цепи транспорта электронов, встроенной во внутреннюю мембрану митохондрий, на конечный акцептор кислород, сопряженный с синтезом АТФ. В состав цепи транспорта электронов входит ряд компонентов: убихинон (коэнзим Q), цитохромы b, c, a, выступающие переносчиками электронов. В результате функционирования электрон-транспортной цепи атомы водорода от НАДН и ФАДН разделяются на протоны и электроны. Электроны постепенно переносятся на кислород, так образуется вода, а протоны перекачиваются в межмембранное пространство митохондрий, используя энергию потока электронов. Затем протоны возвращаются в матрикс митохондрий, проходя через специальные каналы в составе встроенного в мембрану фермента АТФ-синтетазы. При этом образуется АТФ из АДФ и фосфата. В цепи транспорта электронов есть 3 участка сопряжения окисления и фосфорилирования, т.е. мест образования АТФ. Механизм образования энергии и виде АТФ в митохондриях объясняется хемиосмотической теорией П. Митчелла. Кислородное дыхание сопровождается выделением большого количества энергии и аккумуляцией ее молекулах АТФ. Суммарное уравнение аэробного дыхания выглядит так?

С 6 Н 12 О 6 + 6О 2 + 38 Н 3 РО 4 +38 АДФ → 6 СО 2 + 6 Н 2 О + 38 АТФ

Таким образом, при полном окислении одной молекулы глюкозы до конечных продуктов – углекислого газа и воды при доступе кислорода образуется 38 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Сходство между фотосинтезом и аэробным дыханием:

    Необходим механизм обмена углекислого газа и кислорода.

    Необходимы специальные органеллы (хлоропласты, митохондрии).

    Необходима цепь транспорта электронов, встроенная в мембраны.

    Происходит преобразование энергии (синтез АТФ в результате фосфорилирования).

    Происходят циклические реакции (цикл Кальвина, цикл Кребса).

Различия между фотосинтезом и аэробным дыханием:

Фотосинтез

Аэробное дыхание

Анаболический процесс, в результате которого из простых неорганических соединений синтезируются молекулы углеводов.

Процесс диссимиляции, в результате которого молекулы углеводов расщепляются до простых неорганических соединений.

Энергия АТФ накапливается и запасается в углеводах.

Энергия запасается в виде АТФ.

Кислород выделяется.

Кислород расходуется.

Углекислый газ и вода потребляются.

Углекислый газ и вода выделяются.

Происходит увеличение органической массы.

Происходит уменьшение органической массы.

У эукариот процесс протекает в хлоропластах.

У эукариот процесс протекает в митохондриях.

Происходит только в клетках, содержащих хлорофилл, на свету.

Происходит во всех клетках в течение жизни непрерывно.