Какая физическая величина характеризует магнитные свойства вещества. Магнитные свойства вещества

Магнентики - вещества, обладающие магнитными свойствами. Магнетиками являются все вещества, поскольку согласно гипотезе Ампера , магнитные свойства создаются элементарными токами (движением электрона в атоме).

Электрон, вращающийся по замкнутой орбите, представляет собой ток, направление которого противоположно движению электрона. Тогда это движение создает магнитное поле, магнитный момент которого p m = IS направлен по правилу правой руки перпендикулярно плоскости орбиты.

Кроме того, независимо от орбитального движения, электроны обладают собственным магнитным моментом (спином ). Таким образом, магнетизм атомов обусловлен двумя причинами: движением электронов по орбитам и собственным магнитным моментом.

При внесении магнетика во внешнее магнитное поле с индукцией В 0 он намагничивается, то есть создает собственное магнитное поле с индукцией В", которое складывется с внешним:

В = В 0 + В"

Индукция собственного магнитного поля зависит как от внешнего поля, так и от магнитной восприимчивости χ вещества:

В" = χ В 0

Тогда В = В 0 + χ В 0 = В 0 (1 + χ)

Но магнитная индукция внутри магнетика зависит от магнитной проницаемости вещевтва:

В = μ В 0

Отсюда μ = 1 + χ.

Магнитная восприимчивость χ - физическая величина, характеризующая связь между магнитным моментом (намагниченностью) вещества и магнитным полем в этом веществе

Магнитная проницаемость μ - коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией и напряжённостью магнитного поля в веществе

В отличие от диэлектрической проницаемости вещества, которая всегда больше единицы, магнитная проницаемость может быть как больше, так и меньше единицы. Различают диамагнетики (μ < 1) , парамагнетики (μ > 1) и ферромагнетики (μ >> 1) .

Диамагнетики

Диамагнетиками называются вещества, которые намагничиваются во внешнем магнитном поле в направлении, противоположном направлению вектора магнитной индукции поля.

К диамагнетикам относятся вещества, магнитные моменты атомов, молекул или ионов которых в отсутствие внешнего магнитного поля равны нулю. Диамагнетиками являются инертные газы, молекулярный водород и азот, цинк, медь, золото, висмут, парафин и многие другие органические и неорганические соединения.

В случае отсутствия магнитного поля диамагнетик немагнитен, поскольку в данном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома равен нулю.

Т.к. диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойственен всем веществам.

Следует отметить, что магнитная проницаемость у диамагнетиков µ < 1 . Вот, например, у золота µ = 0,999961, у меди µ = 0,9999897 и т.д.

В магнитном поле диамагнетики располагаются перпендикулярно силовым линиям внешнего магнитного поля.

Парамагнетики

Парамагнетики вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.

У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнетиков всегда обладают магнитным моментом. Однако вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому парамагнитные вещества магнитными свойствами не обладают. При внесении парамагнетиков во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов).

Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его.

При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается.

Вот некоторые парамагнитные вещества: а люминий µ = 1,000023; в оздух µ = 1,00000038.

Во внешнем магнитном поле парамагнетики располагаются вдоль силовых линий.

Ферромагнетики

Ферромагнетиками называются твердые вещества, обладающие при не слишком высоких температурах самопроизвольной (спонтанной) намагниченностью, которая сильно изменяется под влиянием внешних воздействий – магнитного поля, деформации, изменения температуры.

Ферромагнетики в отличие от слабомагнитных диа- и парамагнетиков являются сильномагнитными средами:

внутреннее магнитное поле в них может в сотни и тысячи раз превосходить внешнее поле.

Ферромагнитные материалы в большой или меньшей степени обладают магнитной анизотропией, т.е. свойством намагничиваться с различной степенью трудности в различных направлениях.

Магнитные свойства ферромагнитных материалов сохраняются до тех пор, пока их температура не достигнет значения, называемого точкой Кюри . При температурах выше точки Кюри ферромагнетик ведет себя во внешнем магнитном поле как парамагнитное вещество. Он не только теряет свои ферромагнитные свойства, но у него изменяется теплоемкость, электропроводимость и некоторые другие физические характеристики.

Точка Кюри для различных материалов различна:

Природа ферромагнетизма:

Согласно представлениям Вейсса (1865-1940), его описательной теории ферромагнетизма, ферромагнетики при температурах ниже точки Кюри обладают спонтанной намагниченностью независимо от наличия внешнего намагничивающего поля. Однако это вносило некое противоречие, т.к. многие ферромагнитные материалы при температурах ниже точки Кюри не намагничены.

Для устранения этого противоречия Вейсс ввел гипотезу, согласно которой ферромагнетик ниже точки Кюри разбивается на большое число малых микроскопических (порядка 10 -3 – 10 -2 см) областей – доменов , самопроизвольно намагниченных до насыщения.

При отсутствии внешнего магнитного поля магнитные моменты отдельных атомов ориентированы хаотически и компенсируют друг друга, поэтому результирующий магнитный момент ферромагнетика равен нулю, т.е. ферромагнетик не намагничен.

Внешнее магнитное поле ориентирует по полю магнитные моменты не отдельных атомов, как в парамагнетике, а целых областей спонтанной намагниченности. Поэтому с ростом H намагниченность J и магнитная индукция B уже в слабых полях растет довольно быстро.

Различные ферромагнитные материалы обладают неодинаковой способностью проводить магнитный поток. Основной характеристикой ферромагнитного материала является петля магнитного гистерезиса В(Н) . Эта зависимость определяет значение магнитной индукции, которая будет возбуждена в магнитопроводе из данного материала при воздействии некоторой напряженности поля.

Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения.

Гистерезисом называют отставание изменения индукции от напряженности магнитного поля .

Симметричная петля гистерезиса, полученная при максимальной напряженности поля H m , соответствующей насыщению ферромагнетика, называется предельным циклом .

Для предельного цикла устанавливают также значения индукции B r при H = 0, которое называется остаточной индукцией , и значение H c при B = 0, называемое коэрцитивной силой . Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.

Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса называются магнитнотвердыми .

Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса (кривая 2 рис.8а) называются магнитномягкими и используются для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.


Площадь петли гистерезиса характеризует работу, которую необходимо совершить для перемагничивания ферромагнетика. Если по условиям работы ферромагнетик должен перемагничиваться, то его следует делать из магнито-мягкого материала, площадь петли гистерезиса которого мала. Из мягких ферромагнетиков делают сердечники трансформаторов.

Из жестких ферромагнетиков (сталь и ее сплавы) делают постоянные магниты.

МАГНИТНЫЕ СВОЙСТВА И СТРОЕНИЕ ВЕЩЕСТВ

Магнетохимия – раздел химии, изучающий магнитные свойства веществ, а также их связь со строением молекул. Становление ее как науки можно отнести к началу XX века, когда были открыты основные законы магнетизма.

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВ

Магнетизм – фундаментальное свойство материи. С глубокой древности известно свойство постоянных магнитов притягивать железные предметы. Развитие электромагнетизма позволило создать электромагниты более сильные, чем существующие в природе постоянные. Вообще различные приборы и устройства, основанные на использовании электромагнитных явлений, распространены настолько широко, что сейчас без них нельзя уже представить жизни.

Однако с магнитным полем взаимодействуют не только постоянные магниты, но и все остальные вещества. Магнитное поле, взаимодействуя с веществом, изменяет свою величину по сравнению с вакуумом (здесь и далее все формулы записаны в системе СИ):

где µ 0 – магнитная постоянная, равная 4p 10 -7 Гн/м, µ – магнитная проницаемость вещества, B – магнитная индукция (в Тл), H – напряженность магнитного поля (в А/м). Для большинства веществ m очень близка к единице, поэтому в магнетохимии, где основным объектом является молекула, удобнее использовать величину c, которая называется магнитной восприимчивостью. Ее можно отнести к единице объема, массы или количества вещества, тогда она называется соответственно объемной (безразмерной) cv , удельной cd (в см3/г) или молярной (в см3/моль) магнитной восприимчивостью.

Вещества можно разделить на две категории: те, которые ослабляют магнитное поле (c < 0), называются диамагнетиками, те, которые усиливают (c > 0), – парамагнетиками. Можно представить себе, что в неоднородном магнитном поле на диамагнетик действует сила, выталкивающая его из поля, на парамагнетик, наоборот, – втягивающая. На этом основаны рассмотренные ниже методы измерения магнитных свойств веществ. Диамагнетики (а это подавляющее большинство органических и высокомолекулярных соединений) и главным образом парамагнетики являются объектами изучения магнетохимии.

Диамагнетизм – важнейшее свойство материи, обусловленное тем, что под действием магнитного поля электроны в заполненных электронных оболочках (которые можно представить как маленькие проводники) начинают прецессировать, а, как известно, любое движение электрического заряда вызывает магнитное поле, которое по правилу Ленца будет направлено так, чтобы уменьшить воздействие со стороны внешнего поля. Электронную прецессию при этом можно рассматривать как круговые токи. Диамагнетизм свойствен всем веществам, кроме атомарного водорода, потому что у всех веществ имеются спаренные электроны и заполненные электронные оболочки.

Парамагнетизм обусловлен неспаренными электронами, которые называются так потому, что их собственный магнитный момент (спин) ничем не уравновешен (соответственно спины спаренных электронов направлены в противоположные стороны и компенсируют друг друга). В магнитном поле спины стремятся выстроиться по направлению поля, усиливая его, хотя этот порядок и нарушается хаотическим тепловым движением. Поэтому понятно, что парамагнитная восприимчивость зависит от температуры – чем ниже температура, тем выше значение восприимчивость.

Этот вид магнитной восприимчивости еще называют ориентационным парамагнетизмом, так как его причина – ориентация элементарных магнитных моментов во внешнем магнитном поле.

Магнитные свойства электронов в атоме можно описывать двумя способами. В первом способе считается, что собственный (спиновый) магнитный момент электрона не оказывает влияния на орбитальный (обусловленный движением электронов вокруг ядра) момент или наоборот. Точнее, такое взаимное влияние есть всегда (спин-орбитальное взаимодействие), но для 3d-ионов оно мало, и магнитные свойства можно с достаточной точностью описывать двумя квантовыми числами L (орбитальное) и S (спиновое). Для более тяжелых атомов такое приближение становится неприемлемым и вводится еще одно квантовое число полного магнитного момента J, которое может принимать значения от | L + S | до | L – S |

Следует обратить внимание на малость величины энергии магнитного взаимодействия (для комнатных температур и магнитных полей, обычных в лаборатории, энергия магнитных взаимодействий на три-четыре порядка меньше, чем энергия теплового движения молекул).

Существует довольно много веществ, которые при понижении температуры ведут себя сначала как парамагнетики, а затем при достижении определенной температуры резко меняют свои магнитные свойства. Самый известный пример – ферромагнетики и вещество, по которому они получили свое название, – железо, атомные магнитные моменты которого ниже температуры Кюри выстраиваются в одном направлении, вызывая спонтанную намагниченность. Однако макроскопической намагниченности при отсутствии поля не возникает, так как образец самопроизвольно разделяется на области размером около 1 мкм, называемые доменами, в пределах которых элементарные магнитные моменты направлены одинаково, но намагниченности разных доменов ориентированы случайно и в среднем компенсируют друг друга. Силы, вызывающие ферромагнитный переход, можно объяснить только при помощи законов квантовой механики.

Антиферромагнетики характеризуются тем, что спиновые магнитные моменты при температуре антиферромагнитного перехода (температура Нееля TN) упорядочиваются так, что взаимно компенсируют друг друга.

Если компенсация магнитных моментов неполная, то такие вещества называются ферримагнетиками, например Fe2O3 и FeCr2O4 . Последние три класса соединений являются твердыми телами и изучаются в основном физиками. За последние десятилетия физики и химики создали новые магнитные материалы.

В молекуле, содержащей неспаренный электрон, остальные (спаренные) электроны ослабляют магнитное поле, но вклад каждого из них на два-три порядка меньше. Однако если мы хотим очень точно измерить магнитные свойства неспаренных электронов, то должны вводить так называемые диамагнитные поправки, особенно для больших органических молекул, где они могут достигать десятков процентов. Диамагнитные восприимчивости атомов в молекуле складываются друг с другом согласно правилу аддитивности Паскаля-Ланжевена . Для этого диамагнитные восприимчивости атомов каждого сорта умножают на количество таких атомов в молекуле, а затем вводят конститутивные поправки на особенности строения (двойные и тройные связи, ароматические кольца и т.п.). Перейдем к рассмотрению того, как же экспериментально изучают магнитные свойства веществ.

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗМЕРЕНИЕ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ

Основные экспериментальные методы определения магнитной восприимчивости были созданы еще в прошлом веке. Согласно методу Гуи, измеряется изменение веса образца в магнитном поле по сравнению с его отсутствием.

По методу Фарадея измеряется сила, действующая на образец в неоднородном магнитном поле.

Основное отличие метода Гуи от метода Фарадея заключается в том, что в первом случае поддерживается неоднородность по (протяженному) образцу, а во втором – по магнитному полю.

Метод Квинке применяется только для жидкостей и растворов. В нем измеряется изменение высоты столбика жидкости в капилляре под действием магнитного поля

При этом для диамагнитных жидкостей высота столбика понижается, для парамагнитных повышается.

По методу вискозиметра измеряется время истечения жидкости через малое отверстие при включенном (tH) и выключенном (t0) магнитном поле. Время истечения парамагнитных жидкостей в магнитном поле заметно меньше, чем при отсутствии поля, для диамагнитных – наоборот.

Магнитную восприимчивость можно измерить и при помощи ЯМР-спектрометра. Отметим: величина химического сдвига сигнала ЯМР в общем случае определяется не только константой экранирования, которая является мерой электронной плотности на исследуемом ядре, но и магнитной восприимчивостью образца.

Полученное значение магнитной восприимчивости для парамагнетиков определяется количеством неспаренных электронов (для одного неспаренного электрона)

Магнетохимические исследования позволяют установить электронную конфигурацию соединений переходных металлов, которые составляют основу химии координационных (комплексных) соединений.

Измеряя магнитную восприимчивость, можно легко судить о степени окисления и геометрии первой координационной сферы в комплексе.

Известно, что большинство важных на практике химических реакций протекают в растворах, к ним относятся также и реакции комплексообразования, поэтому в следующем разделе рассмотрим магнитные свойства растворов, в которых соединения переходных металлов реализуются в виде комплексов.

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ РАСТВОРОВ

При переходе от твердого тела к раствору следует учитывать магнитные восприимчивости растворителя и всех растворенных веществ. При этом простейшим способом такого учета будет суммирование вкладов всех компонентов раствора по правилу аддитивности. Принцип аддитивности – один из основополагающих принципов в обработке экспериментальных данных. Любые отклонения от него чаще связывают с тем, что сам принцип аддитивности выполняется, а компоненты раствора изменяют свои свойства. Поэтому принимается, что магнитная восприимчивость раствора равна сумме магнитных восприимчивостей отдельных компонентов с учетом концентрации

Из исследования магнитных свойств одного и того же вещества в разных растворителях видно, что они могут заметно зависеть от природы растворителя. Это можно объяснить вхождением молекул растворителя в первую координационную сферу и изменением соответственно электронного строения комплекса, энергий d-орбиталей (D) и других свойств сольватокомплекса. Таким образом, магнетохимия позволяет изучать и сольватацию, то есть взаимодействие растворяемого вещества с растворителем.

Если магнитное поле влияет на свойства раствора, а многочисленные экспериментальные факты (измерения плотности, вязкости, электропроводности, концентрации протонов, магнитной восприимчивости) свидетельствуют, что это так,то следует признать, что энергия взаимодействий отдельных компонентов раствора и ансамбля молекул воды достаточно высока, то есть сопоставима или превышает энергию теплового движения частиц в растворе, которое усредняет всякое воздействие на раствор. Напомним, что энергия магнитного взаимодействия одной частицы (молекулы) мала по сравнению с энергией теплового движения. Такое взаимодействие возможно, если принять, что в воде и водных растворах за счет кооперативного характера водородных связей реализуются большие льдоподобные структурные ансамбли молекул воды, которые могут упрочняться или разрушаться под воздействием растворенных веществ.Энергия образования таких "ансамблей", по-видимому, сопоставима с энергией теплового движения и под магнитным воздействием раствор может запомнить его и приобрести новые свойства, но броуновское движение или повышение температуры ликвидирует эту "память" в течение некоторого времени.

Точно подбирая концентрации парамагнитных веществ в диамагнитном растворителе, можно создать немагнитную жидкость, то есть такую, средняя магнитная восприимчивость которой равна нулю или в которой магнитные поля распространяются точно так же, как и в вакууме. Это интересное свойство пока не нашло применения в технике.

Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:

где - магнитная индукция поля в веществе; - магнитная индукция поля в вакууме, - магнитная индукция поля, возникшего благодаря намагничиванию вещества.

При этом вещество может либо усиливать, либо ослаблять магнитное поле. Влияние вещества на внешнее магнитное поле характеризуется величиной , которая называется магнитной проницаемостью вещества

Магнитная проницаемость - это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Вещества, ослабляющие внешнее магнитное поле, называют диамагнетиками (висмут, азот, гелий, углекислота, вода, серебро, золото, цинк, кадмий и др.).

Вещества, усиливающие внешнее магнитное поле, - парамагнетики (алюминий, кислород, платина, медь, кальций, хром, марганец, соли кобальта и др.).

Для диамагнетиков >1. Но в том и другом случае отличие от 1 невелико (несколько десятитысячных или стотысячных долей единицы). Так, например, у висмута = 0,9998 = 1,000.

Некоторые вещества (железо, кобальт, никель, гадолиний и различные сплавы) вызывают очень большое усиление внешнего поля. Их называют ферромагнетиками . Для них = 10 3 -10 5 .

Впервые объяснение причин, вследствие которых тела обладают магнитными свойствами, дал Ампер. Согласно его гипотезе, внутри молекул и атомов циркулируют элементарные электрические токи, которые и определяют магнитные свойства любого вещества.

В настоящее время установлено, что все атомы и элементарные частицы действительно обладают магнитными свойствами. Магнитные свойства атомов в основном определяются входящими в их состав электронами.

Согласно полуклассической модели атома, предложенной Э. Резерфордом и Н. Бором, электроны в атомах движутся вокруг ядра по замкнутым орбитам (в первом приближении можно считать, что по круговым). Движение электрона можно представить как элементарный круговой ток , где е - заряд электрона, v - частота вращения электрона по орбите. Этот ток образует магнитное поле, которое характеризуется магнитным моментом, модуль его определяется формулой , где S - площадь орбиты.

Магнитный момент электрона, обусловленный движением вокруг ядра, называют орбитальным магнитным моментом . Орбитальный магнитный момент - это векторная величина, и направление определяется по правилу правого винта. Если электрон движется по ходу часовой стрелки (рис. 1), то токи направлены против хода часовой стрелки (по направлению движения положительного заряда), и вектор перпендикулярен плоскости орбиты.

Так как в атоме плоскости орбит различных электронов не совпадают, то их магнитные моменты направлены под разными углами друг к другу. Результирующий орбитальный магнитный момент многоэлектронного атома равен векторной сумме орбитальных магнитных моментов отдельных электронов.

Нескомпенсированным орбитальным магнитным моментом обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками он равен 0.

Кроме орбитального магнитного момента, электрон обладает еще собственным (спиновым) магнитным моментом , что впервые установили О. Штерн и В. Герлах в 1922 г. Существование магнитного поля у электрона было объяснено его вращением вокруг собственной оси, хотя и не следует буквально уподоблять электрон вращающемуся заряженному шарику (волчку).

Достоверно установлено, что магнитное поле электрона является таким же неотъемлемым свойством, как его масса и заряд. Электрон, в весьма грубом приближении, можно представить как очень маленький шарик, окруженный электрическим и магнитным полями (рис. 2). Магнитные поля у всех электронов одинаковы, как одинаковы их массы и заряды. Спиновый магнитный момент - вектор, направленный вдоль оси вращения. Он может ориентироваться только двумя способами: либо по..., либо против... Если в том месте, где находится электрон, есть внешнее магнитное поле, то либо по полю, либо против поля. Как показано в квантовой физике, в одинаковом энергетическом состоянии могут находиться только два электрона, спиновые магнитные моменты которых противоположны (принцип Паули).

У многоэлектронных атомов спиновые магнитные моменты отдельных электронов, как и орбитальные моменты, складываются как векторы. При этом результирующий спиновый магнитный момент атома у атомов с заполненными электронными оболочками равен 0.

Общий магнитный момент атома (молекулы) равен векторной сумме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов:

Диамагнетики состоят из атомов, которые в отсутствие внешнего магнитного поля не имеют собственных магнитных моментов, так как у них скомпенсированы все спиновые и все орбитальные магнитные моменты.

Внешнее магнитное поле не действует на весь атом диамагнетика, но действует на отдельные электроны атома, магнитные моменты которых отличны от нуля. Пусть в данный момент скорость электрона составляет некоторый угол (рис. 3) с магнитной индукцией внешнего поля.

Благодаря составляющей на электрон будет действовать сила Лоренца (направленная к нам на рис. 3), которая вызовет дополнительное (кроме других движений, в которых участвует электрон при отсутствии поля) движение по окружности. Но это движение представляет собой дополнительный круговой ток, который создаст магнитное поле, характеризуемое магнитным моментом (наведенным), направленным по правилу правого винта навстречу . В результате диамагнетики ослабляют внешнее магнитное поле.

Парамагнетики состоят из атомов, у которых результирующий магнитный момент атома . В отсутствие внешнего поля эти моменты ориентированы хаотически и вещество в целом не создает вокруг себя магнитного поля. При помещении парамагнетиков в магнитное поле происходит преимущественная ориентация векторов по полю (этому препятствует тепловое движение частиц). Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается. В парамагнетиках наблюдается и диамагнитный эффект, но он значительно слабее парамагнитного.

Все вещества в зависимости от их магнитных свойств можно разделить на пять групп: диамагнетики, парамагнетики, ферромагнетики, антиферромагнетики, ферримагнетики.

Диамагнетики и парамагнетики – слабо магнитные вещества , намагниченность их невелика и является наведенной внешним полем, а магнитная проницаемость близка к единице m » 1 .

Диамагнетики не обладают собственным магнитным моментом. При внесении во внешнее магнитное поле наведенный магнитный момент ослабляет внешнее поле. Следовательно, их относительная проницаемость m = m а / m 0 меньше единицы m < 1.

Парамагнетики обладают собственным магнитным моментом, но вследствие теплового движения векторы их намагниченности ориентированы хаотично и взаимно компенсируются. Под воздействием напряженности внешнего магнитного поля Н возникает их ориентация в направлении поля и собственный суммарный магнитный момент растет с ростом Н . Влияние же диамагнитного эффекта слабее, и в целом происходит усиление поля, т.е. растет индукция В . Следовательно, абсолютная магнитная проницаемость их m а > m 0 и относительная m > 1 .

Ферромагнетики – сильно магнитные вещества , у которых m >> 1 и достигает десятков и сотен тысяч. К ним относятся: железо, никель, кобальт, гадолиний и при низких температурах пять редкоземельных элементов. Намагниченность их собственная, а не наведенная . Установлено, что их ферромагнитные свойства определяются нескомпенсированными спинами электронов внутренних оболочек и наблюдаются только в кристаллическом состоянии при обменном взаимодействии атомов в кристалле, когда электроны внутренних оболочек принадлежат одновременно своим и соседним атомам.


Взаимодействие атомов в кристалле приводит к параллельной ориентации некомпенсированных спинов и возникает так называемая спонтанная, т.е. самопроизвольная, намагниченность вещества , которая характеризует его ферромагнитные свойства.

Намагниченность ферромагнетиков существует самостоятельно, а не наводится внешним полем, как у других веществ.

Антиферромагнетики. У них нескомпенсированные спины соседних атомов самопроизвольно устанавливаются антипараллельно и взаимно компенсируются, так что собственный магнитный момент вещества становится равным нулю и спонтанная намагниченность у них отсутствует.

Ферримагнетики. У некоторых веществ взаимная компенсация спиновых моментов может оказаться неполной . У них также возникает некоторая спонтанная намагниченность, но значительно меньшая, чем у ферромагнетиков. Но и у них m >> 1 и может достигать нескольких тысяч. Эти вещества – ферриты – состоят из окислов металлов . Их часто называют неметаллическими ферромагнетиками.

Ферромагнетики и ферримагнетики имеют особое свойство: при повышении температуры вещества энергия теплового движения стремиться разрушить состояние спонтанной намагниченности. При температуре, которая у ферромагнетиков называется точкой Кюри, у ферримагнетиков – точкой Ноэля, этой энергии оказывается достаточно, чтобы разрушить параллельную или антипараллельную ориентацию спиновых моментов, и вещества приобретают свойства парамагнетиков. Для железа точка Кюри 1043K, для кобальта, никеля и гадолиния соответственно 1400, 631 и 289 К. Очевидно, при абсолютном нуле температуры спонтанная намагниченность имеет наибольшее возможное значение .

Магнитные свойства вещества

2. Диа- и парамагнетики.

1. Магнитное поле вещества. Гипотеза Ампера.

Опыты показывают, что все вещества, помещённые в магнитное поле, намагничиваются и сами становятся источниками дополнительного магнитного поля.

Магнетики – вещества, способные намагничиваться в магнитном поле.

Для объяснения намагничивания тел Ампер предположил (гипотеза Ампера ), что в молекулах вещества циркулируют круговые токи. Эти токи возникают при движении электронов по орбитам вокруг ядер атомов и создают собственное магнитное поле. Внешнее магнитное поле оказывает на них ориентирующее действие.

Действие внешнего магнитного поля на элементарный ток определяется магнитным моментом тока :

, , (1)

где – сила элементарного тока, – площадь, обтекаемая током, а – вектор нормали к ней. Вектор перпендикулярен к плоскости элементарного тока.

В отсутствие внешнего магнитного поля элементарные токи, а, следовательно, и их магнитные моменты, расположены беспорядочно. Такое вещество не создаёт дополнительное магнитное поле:

Если вещество поместить во внешнее магнитное поле , то магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении. Вещество приобретает некоторый суммарный магнитный момент (намагничивается) и создаёт в пространстве дополнительное магнитное поле .

Внешнее и дополнительное поля в сумме дают результирующее поле:

В качестве характеристики степени намагничивания магнетика применяется вектор намагничивания.

Вектором намагничивания , данного вещества называют магнитный момент единицы объема:

где – магнитный момент отдельной молекулы, а суммирование ведётся по всем молекулам в объёме V .

Единица измерения вектора намагничивания:

,

что совпадает с единицей напряжённости магнитного поля .

Опыт показывает, что вектор намагничивания в изотропных средах пропорционален вектору напряжённости магнитного поля:

где безразмерная величина называется магнитной восприимчивостью вещества .

Индукция и напряжённость внешнего магнитного поля связаны равенством: . Расчёты показывают, что напряжённость дополнительного магнитного поля равна вектору намагничивания : . Следовательно, для индукции дополнительного магнитного поля имеем:

Тогда формула (2) примет вид:

Используя (4), получим:

Безразмерная величина

представляет собой магнитную проницаемость вещества . Подставив (6) в (5), придём к соотношению

которое ранее нами постулировалось.

Формула (6) связывает две характеристики магнетиков: магнитную проницаемость и магнитную восприимчивость.

2. Диа- и парамагнетики.

Все вещества по характеру намагничивания делятся на три класса – диамагнетики , парамагнетики и ферромагнетики .

Диамагнетики – вещества с отрицательной восприимчивостью и соответственно с магнитной проницаемостью .

К ним относятся : водород, вода, стекло, цинк, серебро, золото, медь, висмут.

Так как у диамагнетиков , то из формулы (4) следует, что дополнительное магнитное поле по направлению противоположно внешнему и результирующее магнитное поле незначительно ослабляется .

При внесении диамагнетика в магнитное поле, он выталкивается из области наибольшей напряжённости и устанавливается перпендикулярно силовым линиям.

Атомы диамагнетиков при отсутствии внешнего магнитного поля собственным магнитным моментом не обладают. Под действием внешнего магнитного поля атомы приобретают индуцированный (наведённый) магнитный момент, противоположный полю.

Парамагнетики – вещества с положительной восприимчивостью и магнитной проницаемостью .

К ним относятся : азот, кислород, воздух, эбонит, алюминий, вольфрам, платина.

В парамагнетиках дополнительное магнитное поле совпадает по направлению с внешним, так как , и результирующее магнитное поле незначительно увеличивается .

При внесении парамагнетика в магнитное поле, он втягивается в область большей напряжённости и устанавливается вдоль силовых линий.

Атомы парамагнетиков обладают собственным магнитным моментом при отсутствии внешнего поля, причём эти моменты ориентированы совершенно беспорядочно. При наличии внешнего поля возникает некоторое упорядоченное расположение магнитных моментов вдоль поля.

Абсолютное значение магнитной восприимчивости для диа- и парамагнетиков очень мало (), поэтому для них магнитная проницаемость незначительно отличается от единицы. Диа- и парамагнетики называют слабомагнитными веществами .

3. Ферромагнетики. Гистерезис.

Ферромагнетики – сильномагнитные вещества, у которых магнитная проницаемость значительно больше 1 и достигает значений порядка (.

К ним относятся : железо, кобальт, никель, некоторые редкоземельные металлы, большое количество сплавов.

Зависимость магнитной проницаемости от напряжённости внешнего магнитного поля .

Зависимость вектора намагничивания от напряжённости внешнего магнитного поля .

Зависимость индукции магнитного поля от напряжённости внешнего магнитного поля .

Важнейшей особенностью ферромагнетиков является наличие у них свойства гистерезиса (отставания).

Явление гистерезиса состоит в несовпадении кривых намагничивания и размагничивания ферромагнетика.

При уменьшении индукции внешнего магнитного поля до нуля намагничивание не исчезает, оно характеризуется остаточной индукцией B ос .

Коэрцитивная (задерживающая) сила – величина индукции противоположного поля (отрезок ОС ), необходимая для ликвидации остаточного намагничивания.

Ферромагнетик с большой коэрцитивной силой называется жёстким , а с малой коэрцитивной силой – мягким .

Магнитострикция – деформация ферромагнетиков при намагничивании.

Все ферромагнетики при нагревании теряют свои особые магнитные свойства и становятся парамагнетиками.

Температура Кюри – температура перехода из ферромагнитного состояния в парамагнитное.

Температура Кюри: 770 º С (железо);

1150 º С (кобальт);

360 º С (никель).

В ферромагнетиках ниже температуры Кюри имеются целые намагниченные области – домены , размеры которых достигают . Внешнее магнитное поле, действующее на ферромагнетики, ориентирует магнитные моменты доменов.

Когда векторы магнитных моментов всех доменов устанавливаются параллельно внешнему магнитному полю, наступает магнитное насыщение .

Контрольные вопросы

1. Какие вещества называют магнетиками?

2. Сформулируйте гипотезу Ампера.

3. Дайте определения магнитной проницаемости и магнитной восприимчивости вещества. Запишите соотношение между этими величинами.

4. Что такое диамагнетики? парамагнетики? В чем различие их магнитных свойств?

5. Какие вещества называют ферромагнетиками?

6. Объясните петлю гистерезиса ферромагнетика. Что такое магнитострикция?

7. Какую температуру для ферромагнетика называют температурой Кюри?

8. Каков механизм намагничения ферромагнетиков?