Какое назначение поршня как он устроен. Как работает поршень двигателя внутреннего сгорания? Поршни могут быть

Самые известные и широко применяемые во всем мире механические устройства — это двигатели внутреннего сгорания (далее ДВС). Ассортимент их обширен, а отличаются они рядом особенностей, например, количеством цилиндров, число которых может варьироваться от 1 до 24, используемым топливом.

Работа поршневого двигателя внутреннего сгорания

Одноцилиндровый ДВС можно считать самым примитивным, несбалансированными и имеющими неравномерный ход, несмотря на то, что он является отправной точкой в создании многоцилиндровых двигателей нового поколения. На сегодняшний день они применяются в авиамоделировании, в производстве сельскохозяйственных, бытовых и садовых инструментов. Для автомобилестроения массово применяются четырехцилиндровые двигатели и более солидные аппараты.

Как функционирует и из чего состоит?

Поршневой двигатель внутреннего сгорания имеет сложное строение и состоит из:

  • Корпуса, включающего в себя блок цилиндров, головку блока цилиндров;
  • Газораспределительного механизма;
  • Кривошипно-шатунного механизма (далее КШМ);
  • Ряда вспомогательных систем.

КШМ является связующим звеном между энергией выделяемой при сгорании топливо-воздушной смеси (далее ТВС) в цилиндре и коленвалом, обеспечивающим движение автомобиля. Газораспределительная система отвечает за газообмен в процессе функционирования агрегата: доступ атмосферного кислорода и ТВС в двигатель, и своевременное выведение газов, образовавшихся во время горения.

Устройство простейшего поршневого двигателя

Вспомогательные системы представлены:

  • Впускной, обеспечивающей поступление кислорода в двигатель;
  • Топливной, представленной системой впрыска топлива ;
  • Зажигание, обеспечивающее искру и воспламенение ТВС для двигателей, работающих на бензине (дизельные двигатели отличаются самовоспламенением смеси от высокой температуры);
  • Системой смазки, обеспечивающую уменьшение трения и износа соприкасающихся металлических деталей с помощью машинного масла;
  • Системой охлаждения , которая не допускает перегрева рабочих деталей двигателя, обеспечивая циркуляцию специальных жидкостей типа тосол;
  • Выпускной системой, обеспечивающей выведение газов в соответствующий механизм, состоящей из выпускных клапанов;
  • Системой управления, обеспечивающей наблюдение за функционирование ДВС на уровне электроники.

Основным рабочим элементом в описываемом узле считается поршень двигателя внутреннего сгорания , который и сам является сборной деталью.

Устройство поршня ДВС

Пошаговая схема функционирования

Работа ДВС основывается на энергии расширяющихся газов. Они являются результатом сгорания ТВС внутри механизма. Это физический процесс принуждает поршень к движению в цилиндре. Топливом в этом случае могут служить:

  • Жидкости (бензин, ДТ);
  • Газы;
  • Монооксид углерода как результат сжигания твердого топлива .

Работа двигателя — это непрерывный замкнутый цикл, состоящий из определенного количества тактов. Наиболее распространены ДВС двух видов, различающихся количеством тактов:

  1. Двухтактные, производящие сжатие и рабочий ход;
  2. Четырехтактные – характеризуются четырьмя одинаковыми по продолжительности этапами: впуск, сжатие, рабочий ход, и завершающий – выпуск, это свидетельствует о четырехкратном изменении положения основного рабочего элемента.

Начало такта определяется расположением поршня непосредственно в цилиндре:

  • Верхняя мертвая точка (далее ВМТ);
  • Нижняя мертвая точка (далее НМТ).

Изучая алгоритм работы четырехтактного образца можно досконально понять принцип работы двигателя автомобиля .

Принцип работы двигателя автомобиля

Впуск происходит путем прохождения из верхней мёртвой точки через всю полость цилиндра рабочего поршня с одновременным втягиванием ТВС. Основываясь на конструкционных особенностях, смешивание входящих газов может происходить:

  • В коллекторе впускной системы, это актуально, если двигатель бензиновый с распределенным или центральным впрыском;
  • В камере сгорания, если речь идет о дизельном двигателе, а также двигателе, работающем на бензине, но с непосредственным впрыском.

Первый такт проходит с открытыми клапанами впуска газораспределительного механизма. Количество клапанов впуска и выпуска, время их пребывания в открытом положении, их размер и состояние износа являются факторами, влияющими на мощность двигателя. Поршень на начальном этапе сжатия размещён в НМТ. Впоследствии он начинает перемещаться вверх и сжимать накопившуюся ТВС до размеров, определенных камерой сгорания. Камера сгорания – это свободное пространство в цилиндре, остающееся между его верхом и поршнем в верхней мертвой точке.

Второй такт предполагает закрытие всех клапанов двигателя. Плотность их прилегания напрямую влияет на качество сжатия ТВС и ее последующее возгорание. Также на качество сжатия ТВС оказывает большое влияние уровень износа комплектующих двигателя. Она выражается в размерах пространства между поршнем и цилиндром, в плотности прилегания клапанов. Уровень компрессии двигателя является главным фактором, оказывающим влияние на его мощность. Он измеряется специальным прибором компрессометром.

Рабочий ход начинается когда к процессу подключается система зажигания , генерирующая искру. Поршень при этом находится в максимальной верхней позиции. Смесь взрывается, выделяются газы, создающие повышенное давление, и поршень приводится в движение. Кривошипно-шатунного механизм в свою очередь активирует вращение коленвала, обеспечивающего движение автомобиль. Все клапаны систем в это время находятся в закрытом положении.

Выпускной такт является завершающим в рассматриваемом цикле. Все выпускные клапаны находятся в открытом положении, давая возможность двигателю «выдохнуть» продукты горения. Поршень возвращается в исходную точку и готов к началу нового цикла. Это движение способствует выведению в выпускную систему, а затем в окружающую среду, отработанных газов.

Схема работы двигателя внутреннего сгорания , как уже говорилось выше, основана на цикличности. Рассмотрев детально, как работает поршневой двигатель , можно резюмировать, что КПД такого механизма не более 60%. Обусловлен такой процент тем, что в отдельно взятый момент рабочий такт выполняется лишь в одном цилиндре.

Не вся энергия, полученная в это время, направлена на движение автомобиля. Часть её расходуется на поддержание в движении маховика, который по инерции обеспечивает работу автомобиля во время трех других тактов.

Некоторое количество тепловой энергии невольно тратится на нагревание корпуса и отработанных газов. Вот почему мощность двигателя автомобиля определяется количеством цилиндров, и как следствие, так называемым объемом двигателя, рассчитанным по определенной формуле как суммарный объем всех рабочих цилиндров.

Поршень является одним из самых значимых элементов при преобразовании химической энергии топлива в тепловую, а затем - в механическую, как в прямом, так и в переносном смысле. Моторные характеристики во многом зависят от того, насколько хорошо поршень выполняет свои задачи. Это определяет эффективность и, что ещё важнее, надёжность мотора. Особое значение данный параметр принимает, когда идёт речь о модификациях автомобилей в салонах тюнинга, или о спортивном применении. Конструкторы всегда сталкиваются с проблемой использования специальных поршней , когда повышается мощность. Поршень можно считать одной из самых сложных моторных деталей из-за множества выполняемых функций и достаточно противоречивых свойств. Это в высшей степени подтверждает тот факт, что очень мало автостроителей изготавливают поршни для своих моторов, используя лишь свои силы.

В большинстве случаев они прибегают к услугам специализирующихся на этом деле фирм. О поршнях ходит огромное количество тайн и догадок, которые создаёт разнообразие размеров и форм этой детали. В соответствующем разделе нашего сайта вы сможете найти статью . Изготовить поршень в стандартных условиях машиностроения в тюнинговых компаниях технически сложно, практически невозможно, поэтому большинство компаний этим делом отказывается заниматься. К тому же, производство таких сложных деталей поштучно может быть обременительно с точки зрения финансов. Интуитивно тюнеры понимают, что улучшенные двигатели должны иметь улучшенные поршни.

Устройство поршней

Давайте рассмотрим подробнее, какие к поршням обычно предъявляются требования, и как вообще они устроены.

  • Поршень, во-первых, перемещается в цилиндре, что позволяет совершать механическую работу путём расширения продуктов горения топлива, то есть, сжатых газов

Из этого можно сделать вывод, что он должен сопротивляться давлению газов, обладать термостойкостью и уплотнять канал цилиндра.

  • Во-вторых, поршень должен соответствовать требованиям пары трения, чтобы механические потери и износ стали минимальными.
  • В-третьих, он должен выдерживать реакцию шатуна и механическое воздействие со стороны камеры сгорания.
  • В-четвёртых, поршень должен минимально нагружать инерционными силами криво-шатунный механизм, совершая с высокой скоростью возвратно-подступательные движения.

Получается, что все проблемы, связанные с этой значимой частью двигателя, разделить можно на две категории:

  1. Это механические процессы
  2. Тепловые процессы, причём первая намного обширнее второй. Категории имеют достаточно тесную взаимосвязь. Давайте более подробно рассмотрим первую.

Как известно, топливо сгорает в непоршневом пространстве, и при этом выделяет очень большое количество тепла при каждом цикле работы двигателя. Температура уже сгоревших газов в среднем равна 2000 градусов. Часть энергии перейдёт движущимся частям мотора, а остальная станет нагревать двигатель. Энергия, которая останется в итоге, улетит в трубу вместе с обработанными газами. По законам физики два тела могут передавать друг другу тепло до того момента, пока их температуры полностью не сравняются. Соответственно, если поршень периодически не охлаждать, спустя некоторое время он просто-напросто расплавится. Это очень значимый момент для понимания принципов работы всей поршневой группы.

Особенно это важно тогда, когда мотор форсируется. При увеличении мощности мотора автоматически увеличивается количество генерируемого в камере сгорания тепла за одну временную единицу. Конечно, мы видим очень даже нечасто поршни в расплавленном, однако в любой их проблеме обязательно есть упоминается температура, точно также как скорость присутствует в любом ДТП. Конечно, вина здесь лежит на водителе, однако никто бы не пострадал, если бы автомобиль стоял на месте. Дело в том, что высокие температуры ухудшают характеристики всех материалов. Нагрузка в 100 градусов вызовет упругую деформацию, в 300 градусов - деформирует изделие полностью, а в 450 градусов деформирует её. По этой причине нужно либо применять материалы, которые могут выдержать серьёзные нагрузки от высоких температур, либо принимать меры, предотвращающие рост температуры поршня. Обычно делается и то, и другое. Тем не менее, конструкция поршня должна быть такой, чтобы в необходимых местах было определённое количество металла, который способен противостоять разрушению.

Курс общей физики подтверждает тот факт, что тепловой поток направлен к менее нагретым телам от более нагретых. Таким образом, у нас есть возможность увидеть, как температуры распределяются по поршню во время его работы, и определить значимые конструктивные моменты, которые влияют на его температуру, другими словами, понять, каким образом происходит охлаждение. Мы знаем, что больше всех деталей нагревается рабочее тело, то есть, газы в камере сгорания. Совершенно ясно, что в конце концов тепло окажется передано воздуху, который окружает автомобиль - самому холодному, но при определённых обстоятельствах бесконечно теплоёмкому. Омывая корпус двигателя и радиатор, воздух студит блок цилиндров, охлаждающую жидкость и корпус головки. Нам остаётся только найти мостик, по которому поршень отдаёт своё тепло в антифриз и блок . Для этого существую четыре пути. По своему вкладу они абсолютно разные, однако нужно упомянуть о каждом из них, так как они имеют меньшее или большее значение в зависимости от конструкции двигателя.

Первый путь

Это поршневые кольца, он обеспечивает наибольший поток. Так как первое кольцо расположено ближе к днищу, именно оно играет главную роль. Эта самый короткий путь к охлаждающей жидкости через стенку цилиндра. Одновременно кольца прижаты к стенкам цилиндра и к поршневым канавкам. Они обеспечивают более половины всего теплового потока.

Второй путь

Не так очевиден, однако недооценить его трудно. Второй жидкостью для охлаждения двигателя является масло. Несмотря на свою слабую циркуляцию и относительно небольшой объём, масляный туман имеет доступ к самым нагретым частям мотора. Он от самых горячих точек уносит с собой значительную часть тепла, и отдаёт его в поддон картера. В данном разделе нашего сайта вы сможете найти статью про . При применении масляных форсунок, которые направляют струю на внутреннюю поверхность днища поршня, в теплообмене доля масла нередко достигает 30 - 40 процентов. Разумеется, что если мы нагружаем масло больше степени функции теплоносителя, его необходимо будет остудить. Перегретое масло не только потеряет свои свойства, но так же ещё может привести к неисправности подшипников. И чем выше будет температура масло, тем меньше оно сможет перенести через себя тепла.

Третий путь

Через большие бобышки в палец, потом в шатун, и уже затем в масло. Этот способ не так интересен, ведь на пути имеются значительные тепловые сопротивления в виде стальных деталей и зазоров, которые обладают невысоким коэффициентом сопротивления и значительной протяжённостью.

Четвёртый путь

Не связан с охлаждающей жидкостью или маслом. Часть тепла забирает поступившая в цилиндр после такта впуска свежая топливовоздушная смесь. Количество тепла, которое заберёт эта смесь, зависит от степени открытия дросселя и режима работы. Следует отметить, что тепло, которое образуется при сгорании, также пропорционально заряду. Можно сказать, что данный путь охлаждения отличается скоротечностью, обладает импульсным характером, высокоэффективен, пропорционален последующему нагреванию, благодаря тому факту, что тепло отбирается с той же стороны, с которой нагревается поршень.

Также следует рассказать про стандартный приём, который применяется при настройке моторов спортивного типа. Дело в том, что теплоёмкость смеси в значительной степени определяется её составом. Нередко для нормализации работы мотора нужно совсем немного, на 5 - 10 градусов, снизить внутреннюю температуру. Достигается это при помощи лёгкого забогащения смеси. Причём, данный факт никаким образом не влияет на процесс горения, а температура понижается. Порог детонации отодвигается, калильное зажигание исчезает. В данном случае будет лучше немного богаче, чем немного беднее. Моторы, которые работают на метаноле намного меньше предъявляют требований к системе охлаждения из-за теплоты преобразования, которая в 3 раза больше, чем у бензина.

Следует уделить пристальное внимание процессу передачи тепла по поршневым кольцам по причине его большей значимости. Совершенно ясно, что если перекрыть этот путь по каким либо причинам, длительных форсированных режимов двигатель уже не выдержит. Температура станет очень высокой, поршень начнёт плавиться, а двигатель разрушится. Теперь давайте вспомним о такой характеристики, как процессия, которая, казалось бы, никак не влияет на теплообмен. Если человек сталкивался с подержанным автомобилем, он должен чётко представлять себе, что это такое. Это очень значимый параметр, о котором желает знать любой автовладелец, который заботится о состоянии двигателя своего автомобиля. Компрессия косвенно указывает на степень плотности поршневой группы. Это очень важный параметр, если рассматривать его с точки зрения теплопередачи.

Давайте представим ситуацию, что кольцо к стенке цилиндра не прилегает по всей своей длине. В этом случае сгоревшие газы создадут барьер, который будет мешать передаче тепла через кольцо в стенку цилиндра, начиная от поршня, когда будут прорываться в щель. Это равносильно тому, что вы закроете часть радиатора автомобиля, чтобы у него не было возможности охладиться воздухом.

Если у кольца нет тесного контакта с канавкой, мы будем наблюдать ещё более страшную картину. В тех местах, где у газов есть возможность протекать через канавку мимо кольца, участок поршня просто лишается возможности охлаждаться, попадая в своеобразный тепловой мешок. В результате получаем выкрашивание и прогар части огневого пояса, которая прилегает к месту утечки. Именно по этой причине так много внимания уделяется износу канавки и геометрии цилиндра кольца. И главная причина вовсе не ухудшение энергетики. Ведь небольшое количество газов, которые прорываются в картер, не несёт в себе достаточной энергии, чтобы оказать влияние на потерю давления в такте рабочего хода и, соответственно, на потерю двигателем момента. Тем более, если речь идёт о высокооборотном моторе. Намного больше вреда двигателю наносит небольшая плотность в смысле потери надёжности и жёсткости и локальных тепловых перегрузок. Именно по этой причине очень быстро ломаются восстановленные методом перегильзовки блока или замены колец поршни, которые уже вышли из строя. Именно поэтому в первую очередь у спортивных моторов разрушается цилиндр, который имеет меньшую компрессию.

Здесь, видимо, следует коснуться вопроса, обязательно обсуждаемого при изготовлении специальных поршней для тюнинговых или спортивных приложений. Сколько именно у нового поршня будет колец? Какой толщины будут эти кольца? С точки зрения механики лучше, когда колец немного. Чем уже они будут, тем меньше будет потерь в поршневой группе. Однако при уменьшении толщины и высоты колец, будут ухудшаться условия охлаждения поршня, и увеличиваться тепловое сопротивление. Поэтому при выборе конструкции всегда приходится идти на компромисс. Жёсткость рамок увеличивается с быстроходностью мотора. В данном разделе нашего сайта вы сможете найти статью про . Скоротечность процессов снижает требования к уплотнению. Механические потери растут вместе со скоростью, и их нужно уменьшать, иначе всё, что преобразовалось ранее в механическую мощность, просто не достигнет колёс. Между тем, количество вырабатываемого тепла становится больше, поэтому охлаждающий мостик должен быть расширен. Из этого получаем, что кольца должны быть как узкими, так и широкими. Для быстроходности их нужно два, а для эффективности охлаждения поршня - три. Найти оптимальное решение этой задачи должен конструктор. Результаты его работы покажет сбалансированность двигателя.

На сегодняшний день инженеры, которые работают в крупных научных центрах и производственных компаниях, имеют огромный эмпирический материал, на основе которого создают расчётные методы, позволяющие предсказать поле характеристик и температур конкретного изделия с очень большой точностью. Это доступно очень и очень немногим тюнинговым компаниям. В этой статье специально не упоминаются многие значения конкретных величин, которые бы побудили бы некоторых читателей взять в руки калькуляторы. Делать же тепловые расчёты на пальцах совсем не перспективное и абсолютно никому не нужное занятие. Эта статья раскрывает ту сторону происходящих в двигателе процессов, которая очень редко рассматривается, но всегда подразумевается. Я лишь хотел раскрыть необходимость и важность влияния тепла на общую эффективность работы двигателя. Что касается механической части этого вопроса, то о нём мы подробно поговорим в следующий раз.

Думаю, любой автомобилист, скорее всего знает как выглядит поршень. Но на этом, как правило, познания о главной детали двигателя и заканчиваются. Поэтому восполним пробел и поговорим о назначении поршня, его конструктивных особенностях и материалах для изготовления.

Как выглядит поршень? Сложная деталь. Это подтверждает такой факт – очень мало автомобилестроителей сами изготавливают поршни, поручая это специализированным производителям.

А еще – это главное звено в процессе превращения химической энергии топлива в тепловую, а затем в механическую.

Поршень, я бы сказал, это красивая деталь цилиндрической формы, она выполняет умопомрачительные возвратно-поступательные движения в цилиндре, принимает на себя высокие температуры и изменения давления газа, превращая все это в механическую работу.

То есть, вот какою работу выполняет поршень:

  • принимает на себя давление газов из камеры сгорания и передает это давление на коленчатый вал двигателя;
  • обеспечивает жесткий процесс микровзрывов в цилиндре, при этом герметично изолируя надпоршневую полость от подпоршневого пространства, предохраняя от попадания газов в кратер, а смазочного масла в камеру сгорания.

Как выглядит поршень. Конструкция

Схема подготовлена по материалам Volkswagen AG

  1. головка поршня;
  2. палец;
  3. стопорное кольцо;
  4. бобышки;
  5. головка шатуна;
  6. юбка; вставка стальная;
  7. трапециевидноекомпрессионное кольцо;
  8. коническое с подрезом компрессионное кольцо;
  9. маслосъемное кольцо с пружинным расширителем

Поршень состоит из днища, уплотняющей части с поршневыми кольцами для создания компрессии и удаления масла, и направляющей части (юбки).

В средней части поршня (зона юбки) находятся бобышки с отверстиями для пальца и стопорных колец.

Рабочее днище

Знаете как выглядит поршень и как называется эта часть? Эта часть детали служит для приема усилия от давления газов в камере сгорания и называется рабочее днище . Ее форма зависит от геометрии этой камеры и размещения клапанов.

В случае, когда днище вогнутое, форма камеры сгорания напоминает сферическую. Это увеличивает ее поверхность, но ведет к возрастанию образования нагара, а прочность вогнутого днища ниже, чем плоского.

Выпуклое днище делает камеру сгорания щелевидной формы, что приводит к ухудшению процесса завихрения смеси и охлаждения самого днища, хотя нагарообразование снижается.

Кроме того, такая форма днища уменьшает массу поршня при достаточной прочности.

Плоское днище по своим показателям промежуточный вариант между двумя предыдущими и чаще используется в карбюраторных двигателях.

В дизельных моторах разнообразие форм днищ еще больше, они изменяются в зависимости от степени сжатия, метода образования смеси, расположения форсунок и многих других факторов.

Уплотнительный сектор

Головка поршня герметизирует подвижное соединение поршня с цилиндром за счёт поршневых колец, которые установлены в специальных канавках. В верхних канавках вставлены компрессионные кольца, а в нижней – маслосъёмное кольцо. В канавке для маслосъёмного кольца есть сквозные отверстия, через них происходит отвод излишков масла во внутреннюю полость поршня.

Направляющая юбка, бобышки

Участок поршня, расположенный ниже маслосъемного кольца, называют юбкой поршня, а еще тронковой или направляющей частью.

Ее функция – удержание поршня в нужном направлении и восприятие боковых нагрузок.

С внутренней стороны на юбке есть приливы – бобышки, в них просверлены отверстия для поршневого пальца. А для его фиксации в отверстиях проточены канавки, для запирания пальца стопорными кольцами.

Что скажут металурги

Так как деталь работает в невыносимых условиях, то к металлам, для его изготовления, предъявляются достаточно жесткие требования:

  • для уменьшения инерционных нагрузок у материала должен бить малый удельный вес при достаточной прочности;
  • малый коэффициент температурного расширения;
  • сохранение физических свойств (прочность) при повышенных температурах;
  • значительная теплопроводность и теплоёмкость;
  • минимальный коэффициент трения в паре с материалом стенки цилиндра;
  • значительная сопротивляемость износу;
  • отсутствие усталостного разрушения материала под воздействием нагрузок;
  • низкая цена, общедоступность и легкость механической и других видов обработки в процессе производства.

Понятно, что металла, полностью соответствующего перечисленным требованиям, просто не существует. Поэтому для массовых автомобильных двигателей поршни изготавливаются в основном из двух материалов – чугуна и сплавов алюминия, а если быть точным, то из силуминовых сплавов, содержащих алюминий и кремний.

Чугунный вариант

У чугуна много плюсов, он твёрд, хорошо переносит повышенные температуры, отличается оптимальной сопротивляемостью к износу, имеет низкий коэффициент трения (пара чугун – чугун). И коэффициент температурного расширения у него ниже чем у алюминиевого поршня.

Но есть и недостатки: низкая теплопроводность, из-за чего температура днища у чугунного поршня больше чем у алюминиевого аналога.

Но основной недостаток чугуна ‒ значительная плотность, а значит вес. Для увеличения мощности и эффективности двигателя конструкторы обычно повышают обороты, но тяжелые чугунные поршни не позволяют это делать по причине высоких инерционных нагрузок.

Поэтому для современных автомобильных двигателей, как бензиновых, так и дизельных, отливают алюминиевые поршни.

Алюминиевый вариант

Алюминий имеет значительно меньший вес нежели чугун, но так как он мягче, толщину стенок поршня приходится увеличивать, в результате вес поршня становится легче всего лишь на 30 – 40 процентов по отношению к чугунному.

Коме того у алюминия повышенный температурный коэффициент расширения, поэтому в тело детали приходится вплавлять термостабилизирующие пластины из стали, и делать увеличенные зазоры.

У алюминия довольно малый коэффициент трения (пара: алюминий – чугун), что хорошо для работы алюминиевых поршней в двигателях с чугунным блоком цилиндров или чугунными гильзами.

На современных двигателях немецких марок – Ауди, Фольксваген, Мерседес нет чугунных гильз. Алюминиевые цилиндры там обработаны специальным способом, так что поверхность стенок получается очень твёрдая и имеет сопротивление износу даже выше чем при установке чугунных гильз.

А чтобы уменьшить трение в паре алюминий – алюминий, проводится железнение поверхности юбки. Таким образом отказ от чугунных гильз намного снижает вес блока цилиндров.

В кремнеалюминиевые сплавы, из которых делают поршни основной массы автомобильных двигателей, для улучшения показателей добавляют медь, никель и другие металлы.

Поршни серийных автомобилей производятся методом литья, а на форсированных двигателях применяют изделия, изготовленные методом горячей штамповки. Это улучшает структуру материала ‒ увеличивается прочность и устойчивость к износу. Правда, в штампованный вариант невозможно вмонтировать стальные терморегулирующие пластины.

Вот пожалуй и всё. Вами получен необходимый минимум знаний, как выглядит поршень, его конструкции и условиях работы.

Осталось поделится этой информацией с друзьями в соц.сетях, пригласить их на рюмочку чая и в домашней, непринужденной обстановке пригласить их пополнить ряды читателей нашего блога.

А еще вам будет интересно знать про и . Дерзайте, жмите на ссылку!

До новых встреч, друзья!

Поршень является одним из элементов кривошипно-шатунного механизма, на котором основан принцип работы многих двигателей внутреннего сгорания. В приведенной статье рассмотрена конструкция и особенности данных деталей.

Определение

Поршень — это деталь, выполняющая в цилиндре возвратно-поступательные движения и обеспечивающая преобразование в механическую работу изменения давления газа.

Назначение

С участием этих деталей реализуется термодинамический процесс работы мотора. Так как поршень — это один из элементов кривошипно-шатунного механизма, он воспринимает давление, производимое газами, и передает усилие на шатун. К тому же он обеспечивает герметизацию камеры сгорания и отвод от нее тепла.

Конструкция

Поршень — это трехсоставная деталь, то есть его конструкция включает три компонента, выполняющих различные функции, и две части: головку, в которую объединяют днище и уплотняющую часть, и направляющую часть, представленную юбкой.

Днище

Может иметь различную форму в зависимости от многих факторов. Например, конфигурация днища поршней двигателя внутреннего сгорания определяется расположением прочих конструктивных элементов, таких как форсунки, свечи, клапаны, формой камеры сгорания, особенностями протекающих в ней процессов, общей конструкцией двигателя и т. д. В любом случае она определяет особенности функционирования.

Выделяют два основных типа конфигурации днища поршней: выпуклая и вогнутая. Первый обеспечивает большую прочность, но ухудшает конфигурацию камеры сгорания. При вогнутой форме днища камера сгорания, наоборот, имеет оптимальную форму, однако более интенсивно откладывается нагар. Реже (в двухтактных двигателях) встречаются поршни с днищем, представленным выступом отражателя. Это нужно при продувке для направленного перемещения продуктов сгорания. Детали бензиновых двигателей обычно имеют днище плоской или почти плоской формы. Иногда в них присутствуют канавки для полного открытия клапанов. У моторов с непосредственным впрыском поршни характеризуются более сложной конфигурацией. У дизельных двигателей они отличаются наличием камеры сгорания в днище, обеспечивающей хорошее завихрение и улучшающей смесеобразование.

Большинство поршней односторонние, хотя встречаются и двусторонние варианты, которые имеют два днища.

Расстояние между канавкой первого компрессионного кольца и днищем носит название огневого пояса поршня. Очень важно значение его высоты, которое различно для деталей из разных материалов. В любом случае выход высоты огненного кольца за рамки минимально допустимого значения может повлечь прогар поршня и деформацию посадочного места верхнего компрессионного кольца.

Уплотняющая часть

Здесь находятся маслосъемные и компрессионные кольца. У деталей первого типа каналы имеют сквозные отверстия для поступления внутрь поршня удаленного с поверхности цилиндра масла, откуда оно попадает в поддон картера. Некоторые из них имеют ободок из коррозионностойкого чугуна с канавкой для верхнего компрессионного кольца.

Состоящие из чугуна, служат для создания плотного прилегания поршня к цилиндру. Поэтому они являются источником наибольшего трения в моторе, потери от которого составляют 25% от общего количества механических потерь в моторе. Количество и расположение колец определяются типом и назначением двигателя. Наиболее часто используют 2 компрессионных и 1 маслосъемное кольцо.

Компрессионные кольца выполняют задачу предотвращения поступления газов в картер из камеры сгорания. Наибольшие нагрузки приходятся на первое из них, поэтому в некоторых двигателях его канавку укрепляют стальной вставкой. Компрессионные кольца могут быть трапециевидной, конической, бочкообразной формы. Некоторые из них имеют вырез.

Служит для удаления лишнего масла с цилиндра и препятствует его попаданию в камеру сгорания. Для этого в нем есть отверстия. Некоторые варианты имеют пружинный расширитель.

Направляющая часть (юбка)

Имеет бочкообразную (криволинейную) либо конусообразную форму для компенсации На ней находятся два прилива для поршневого пальца. На этих участках юбка имеет наибольшую массу. К тому же там наблюдаются наибольшие температурные деформации при нагреве. Для их снижения используют различные меры. В нижней части юбки может находиться маслосъемное кольцо.

Для передачи усилия от поршня или к нему применяют чаще всего кривошип либо шток. Поршневой палец служит для соединения данной детали с ними. Он состоит из стали, имеет трубчатую форму и может быть установлен несколькими способами. Чаще всего используют плавающий палец, который может проворачиваться в процессе работы. Для предотвращения смещения его фиксируют стопорными кольцами. Жесткое закрепление применяют значительно реже. Шток в некоторых случаях выполняет функцию направляющего устройства, заменяя юбку поршня.

Материалы

Поршень двигателя может состоять из различных материалов. В любом случае они должны обладать такими качествами, как высокая прочность, хорошая теплопроводность, сопротивляемость коррозии и низкие коэффициент линейного расширения и плотность. Для производства поршней используют сплавы алюминия и чугун.

Чугун

Отличается большой прочностью, износостойкостью и невысоким Последнее свойство обеспечивает возможность работы таких поршней с малыми зазорами, благодаря чему достигается хорошее уплотнение цилиндра. Однако вследствие значительного удельного веса чугунные детали используют лишь в тех двигателях, где возвратно движущиеся массы имеют силы инерции, составляющие не более шестой части сил давления на днище поршня газов. Кроме того, из-за низкой теплопроводности разогрев днища чугунных деталей в процессе работы двигателя достигает 350-450 ° С, что особо нежелательно для карбюраторных вариантов, так как приводит к калильному зажиганию.

Алюминий

Данный материал используют для поршней наиболее часто. Это объясняется небольшим удельным весом (алюминиевые детали легче чугунных на 30%), высокой теплопроводностью (в 3-4 раза больше, чем у чугуна), обеспечивающей разогрев днища не более чем до 250 °С, что предоставляет возможность увелич ения степен и сжатия и обеспечивает лучше е наполнени е цилиндро в, и высокими антифрикционны ми свойствами. При этом алюминий имеет больший в 2 раза, чем у чугуна, коэффициент линейного расширения , что вынуждает делать большие промежутки со стенками цилиндров, то есть размеры поршней из алюминия меньше, чем из чугун а, для одинаковых цилиндров . К тому же такие детали и меют меньшую прочность, особенно в нагретом состоянии (при 300 °С она снижается на 50-55%, тогда как у чугун ных — на 10%).

Для снижения степени трения стенки поршней покрывают в качестве которого используют графит и дисульфид молибдена.

Нагрев

Как было упомянуто, в процессе работы могут разогреваться до 250-450 °С. Поэтому необходимо принимать меры, направленные как на снижение нагрева, так и на компенсацию вызываемого им температурного расширения деталей.

Для охлаждения поршней используют масло, которое различными способами подают внутрь них: создают масляный туман в цилиндре, разбрызгивают его через отверстие в шатуне либо форсункой, впрыскивают в кольцевой канал, обеспечивают циркуляцию по трубчатому змеевику в днище поршня.

Для компенсации температурных деформаций на участках приливов юбки с двух сторон обтачивают металл на 0,5-1,5 мм в глубину в виде П- или Т-образных прорезей . Такая мера улучшает ее смазывание и предотвращает появлени е от температурных деформаций задиров, поэтому данны е углубления называют холодильниками. Их используют в сочетании с конусо- или бочкообразной формой юбки. Это компенсирует ее линейное расширение за счет того, что при нагреве юбка принимает цилиндрическую форму. Кроме того, используют компенсационные вставки , чтобы диаметр поршня испытывал ограниченное теплово е расширени е в плоскости качания шатуна. Также можно изолировать направляющую часть от головки, испытывающей наибольший нагрев. Наконец, стенкам юбки придают пружинящие свойства путем нанесения косого разреза по всей ее длине.

Технология производства

По способу изготовления поршни подразделяют на литые и кованые (штампованные). Детали первого типа применяют на большинств е автомобилей, а замена поршней на кованые используется при тюнинге. Кованые варианты отличаются повышенной прочностью и долговечностью, а также меньшей массой. Поэтому установка поршней такого типа повышает надежность и производительность двигателя. Это особо важно для моторов, работающих в условиях повышенных нагрузок, в то время как для повседневной эксплуатации достаточно литых деталей.

Применение

Поршень — это многофункциональная деталь. Поэтому его используют не только в двигателях. Например, существует поршень суппорта тормозной системы, так как она функционирует аналогичным образом . Также кривошипно-шатунный механизм применяют на некоторых моделях компрессоров, насосов и прочем оборудовании.

В кривошипно-шатунном механизме поршень выполняет несколько функций, среди которых восприятие давления газов и передача усилий на шатун, герметизация камеры сгорания и отвод от нее тепла. Поршень является наиболее характерной деталью двигателя внутреннего сгорания , т.к. именно с его помощью реализуется термодинамический процесс двигателя.

Условия, в которых работает поршень, экстремальны и характеризуются высоким давлением, температурой и инерционными нагрузками. Поэтому поршни на современных двигателях изготавливаются из легкого, прочного и термостойкого материала – алюминиевого сплава, реже из стали. Поршни изготавливаются двумя способами – литьем под давлением или штамповкой, т.н. кованые поршни.

Поршень цельный конструктивный элемент, который условно разделяют на головку (в некоторых источниках ее называют днище) и юбку. Форма и конструкция поршня в значительной степени определяются типом двигателя, формой камеры сгорания и процессом сгорания, протекающим в ней. Поршень бензинового двигателя имеет плоскую или близкую к плоской поверхность головки. В ней могут быть выполнены канавки для полного открытия клапанов. Поршни двигателей с непосредственным впрыском топлива имеют более сложную форму. В головке поршня дизельного двигателя выполняется камера сгорания определенной формы, которая обеспечивает хорошее завихрение и улучшает смесеобразование.

Ниже головки поршня выполняются канавки для установки поршневых колец. Юбка поршня имеет конусообразную или криволинейную (бочкообразную ) форму. Такая форма юбки компенсирует температурное расширение поршня при нагреве. При достижении рабочей температуры двигателя поршень принимает цилиндрическую форму. Для снижения потерь на трение на боковую поверхность поршня наносится слой антифрикционного материала (дисульфид молибдена, графит ). В юбке поршня выполнены отверстия с приливами (бобышки ) для крепления поршневого пальца.

Охлаждение поршня осуществляется со стороны внутренней поверхности различными способами:

  1. масляный туман в цилиндре;
  2. разбрызгивание масла через отверстие в шатуне;
  3. разбрызгивание масла специальной форсункой;
  4. впрыскивание масла в специальный кольцевой канал в зоне колец;
  5. циркуляция масла по трубчатому змеевику в головке поршня.

Поршневые кольца образуют плотное соединение поршня со стенками цилиндра. Они изготавливаются из модифицированного чугуна. Поршневые кольца основной источник трения в двигателе внутреннего сгорания. Потери на трение в кольцах достигают до 25% всех механических потерь в двигателе.

Число и расположение колец зависит от типа и назначения двигателя. Самая распространенная схема – два компрессионных и одно маслосъемное кольцо. Компрессионные кольца препятствуют прорыву газов из камеры сгорания в картер двигателя. Первое компрессионное кольцо работает в наиболее тяжелых условиях. Поэтому на поршнях дизельных и ряда форсированных бензиновых двигателей в канавке кольца устанавливается стальная вставка, повышающая прочность и позволяющая реализовать максимальную степень сжатия. Компрессионные кольца могут иметь трапециевидную, бочкообразную, коническую форму, некоторые выполняются с порезом (вырезом).

Маслосъемное кольцо удаляет излишки масла с поверхности цилиндра и препятствует попаданию масла в камеру сгорания. Кольцо имеет множество дренажных отверстий. Некоторые конструкции колец имеют пружинный расширитель.

Соединение поршня с шатуном осуществляется с помощью поршневого пальца, который имеет трубчатую форму и изготавливается из стали. Имеется несколько способ установки поршневого пальца. Самый популярный т.н. плавающий палец , который имеет возможность проворачиваться в бобышках и поршневой головке шатуна во время работы. Для предотвращения смещения пальца он фиксируется стопорными кольцами. Значительно реже применяется жесткое закрепление концов пальца в поршне или жесткое закрепление пальца в поршневой головке шатуна.

Поршень, поршневые кольца и поршневой палец носят устоявшееся название поршневая группа.