Какое условие является необходимым для прорастания семян. Условия, необходимые для прорастания семян

Всем знакомо определение электрического тока. Оно представляется как направленное движение заряженных частиц. Подобное движение в различных средах имеет принципиальные отличия. Как основной пример этого явления можно представить течение и распространение электрического тока в жидкостях . Такие явления характеризуются различными свойствами и серьезно отличаются от упорядоченного движения заряженных частиц, которое происходит в обычных условиях не под воздействием различных жидкостей.

Рисунок 1. Электрический ток в жидкостях. Автор24 - интернет-биржа студенческих работ

Формирование электрического тока в жидкостях

Несмотря на то, что процесс проводимости электрического тока осуществляется посредством металлических приборов (проводников), ток в жидкостях лежит в зависимости от движения заряженных ионов, которые приобрели или потеряли по некой определенной причине подобные атомы и молекулы. Показателем такого движения выступает изменение свойств определенного вещества, где проходят ионы. Таким образом, нужно опираться на основное определение электрического тока, чтобы сформировать специфическое понятие формирования тока в различных жидкостях. Определено, что разложение отрицательно заряженных ионов способствует движению в область источника тока с положительными значениями. Положительно заряженные ионы в таких процессах будут двигаться в противоположном направлении – к отрицательному источнику тока.

Жидкие проводники делятся на три основных типа:

  • полупроводники;
  • диэлектрики;
  • проводники.

Определение 1

Электролитическая диссоциация - процесс разложения молекул определенного раствора на отрицательные и положительные заряженные ионы.

Можно установить, что электроток в жидкостях может возникать после изменения состава и химического свойства используемых жидкостей. Это напрочь противоречит теории распространения электрического тока иными способами при использовании обычного металлического проводника.

Опыты Фарадея и электролиз

Течение электрического тока в жидкостях – это продукт процесса перемещения заряженных ионов. Проблемы, связанные с возникновение и распространением электротока в жидкостях, стали причиной изучения знаменитого ученого Майкла Фарадея. Он при помощи многочисленных практических исследований смог найти доказательства, что масса вещества, выделяемая в процессе электролиза, зависит от количества времени и электричества. При этом имеет значение время, в течение которого проводились эксперименты.

Также ученый смог выяснить, что в процессе электролиза при выделении определенного количества вещества необходимо одинаковое количество электрических зарядов. Это количество удалось точно установить и зафиксировать в постоянной величине, которая получила название числа Фарадея.

В жидкостях электрический ток имеет иные условия распространения. Он взаимодействует с молекулами воды. Они в значительной степени затрудняют все передвижения ионов, что не наблюдалось в опытах с использование обычного металлического проводника. Из этого следует, что образование тока при электролитических реакциях будет не столь большим. Однако при увеличении температуры раствора проводимость постепенно увеличивается. Это означает, что напряжение электрического тока растет. Также в процессе электролиза было замечено, что вероятность распада определенной молекулы на отрицательные или положительные заряды ионов увеличивается из-за большого числа молекул используемого вещества или растворителя. При насыщении раствора ионами сверх определенной нормы, происходит обратный процесс. Проводимость раствора вновь начинает снижаться.

В настоящее время процесс электролиза нашел свое применения во многих областях и сферах науки и на производстве. Промышленные предприятия его используют при получении или обработке металла. Электрохимические реакции участвуют в:

  • электролизе солей;
  • гальванике;
  • полировке поверхностей;
  • иных окислительно-восстановительных процессах.

Электрический ток в вакууме и жидкостях

Распространение электрического тока в жидкостях и иных средах представляет собой довольно сложный процесс, который имеет собственные характеристики, особенности и свойства. Дело в том, что в подобных средах полностью отсутствуют заряды в телах, поэтому их принято называть диэлектриками. Главной целью исследований стало то, чтобы создать такие условия, при которых атомы и молекулы могли бы начать свое движения и процесс образования электрического тока начался. Для этого принято использовать специальные механизмы или устройства. Основным элементом таких модульных устройств стали проводники в виде металлических пластин.

Для определения основных параметров тока необходимо воспользоваться известными теориями и формулами. Самым распространенным являются закон Ома. Он выступает в роли универсальной амперной характеристики, где осуществляется принцип зависимости тока от напряжения. Напомним, что напряжение измеряется в единице Ампер.

Для проведения опытов с водой и солью необходимо подготовить сосуд с соленой водой. Это даст практическое и визуальное представление о процессах, которые происходят при образовании электрического тока в жидкостях. Также установка должна содержать электроды прямоугольной формы и источники питания. Для полномасштабной подготовки к опытам нужно иметь амперную установку. Она поможет провести энергию от сети питания к электродам.

В роли проводников будут выступать металлические пластины. Их опускают в используемую жидкость, а затем подключается напряжение. Сразу начинается перемещение частиц. Оно проходит в хаотичном режиме. При возникновении магнитного поля между проводниками все процессе движения частиц упорядочиваются.

Ионы начинают меняться зарядами и объединяться. Таким образом, катоды становятся анодами, а аноды – катодами. В этом процессе необходимо также учитывать еще несколько важных факторов:

  • уровень диссоциации;
  • температура;
  • электрическое сопротивление;
  • использование переменного или постоянного тока.

В конце эксперимента происходит образование слоя соли на пластинах.

К жидкостям, являющимся проводниками, относятся расплавы и растворы электролитов, т.е. солей, кислот и щелочей.

При растворении электролитов в воде происходит распад их молекул на ионы – электролитическая диссоциация. Степень диссоциации, т.е. доля в растворенном веществе молекул, распавшихся на ионы, зависит от температуры, концентрации раствора и электрических свойств растворителя. С увеличением температуры степень диссоциации возрастает и, следовательно, увеличивается концентрация положительно и отрицательно заряженных ионов. Ионы разных знаков при встрече могу снова объединиться в нейтральные молекулы. Такой процесс называется рекомбинация. При неизменных условиях в растворе устанавливается динамическое равновесие, при котором число молекул, распадающихся за секунду на ионы, равно числу пар ионов, которые за то же время вновь объединяются в нейтральные молекулы.

Т.о., свободными носителями зарядов в проводящих жидкостях являются положительные и отрицательные ионы. Если в жидкость поместить электроды подключенные к источнику тока, то эти ионы начнут придут в движение. Один из электродов подключен к отрицательному полюсу источника тока – он называется катод – другой подключен к положительному - анод. При подключении к источнику тока ионы в растворе электролита отрицательные ионы начинают двигаться к положительному электроду (аноду), а положительные – соответственно к отрицательному (катоду). То есть установится электрический ток. Такую проводимость в жидкостях называют ионной, так как носителями заряда являются ионы.

При прохождении тока через раствор электролита на электродах происходит выделение вещества, связанное с окислительно-восстановительными реакциями. На аноде отрицательно заряженные ионы отдают свои лишние электроны (окислительная реакция), а на катоде положительные ионы принимают недостающие электроны (восстановительная реакция). Такой процесс называется электролизом.

При электролизе на электродах происходит выделение вещества. Зависимость массы выделившегося вещества m от силы тока, времени прохождения тока и самого вещества установил М.Фарадей. Этот закон можно получить теоретически. Итак, масса выделившегося вещества равна произведению массы одного иона m i на число ионов N i , достигших электрода за время Dt. Масса иона согласно формуле количества вещества равна m i =M/N a , где M – молярная масса вещества, N a – постоянная Авогадро. Число ионов, достигших электрода, равно N i =Dq/q i , где Dq – заряд, прошедший электролит за время Dt (Dq=I*Dt), q i – заряд иона, который определяется валентностью атома (q i = n*e, где n – валентность атома, e – элементарный заряд). При подстановке этих формул получаем, что m=M/(neN a)*IDt. Если обозначить через k (коэффициент пропорциональности) =M/(neN a), то имеем m=kIDt. Это математическая запись первого закона Фарадея – одного из законов электролиза. Масса вещества, выделившегося на электроде за время Dt при прохождении электрического тока, пропорциональна силе тока и этому промежутку времени. Величину k называют электрохимическим эквивалентом данного вещества, который численно равен массе вещества, выделившегося на электродах, при переносе ионами заряда, равного 1 Кл. [k]= 1 кг/Кл. k = M/(neN a) = 1/F*M/n , где F – постоянная Фарадея. F=eN a =9,65*10 4 Кл/моль. Выведенная формула k=(1/F)*(M/n) является вторым законом Фарадея.


Электролиз широко применяется в технике для различных целей, например,так покрывают поверхность одного металла тонким слоем другого (никелирование, хромирование, омеднение и др.). Если обеспечить хорошее отслаивание электролитического покрытия от поверхности, то можно получить копию рельефа поверхности. Этот процесс называется гальванопластика. Также при помощи электролиза осуществляют очистку металлов от примесей, например, толстые листы неочищенной меди, полученной из руды, помещают в ванну в качестве анода. В процессе электролиза медь растворяется, примеси выпадают на дно, а на катоде оседает чистая медь. С помощью электролиза ещё получают электронные платы. На диэлектрик наклеивают тонкую сложную картину соединяющих проводов, затем помещают пластину в электролит, где вытравливаются незакрытые краской участки медного слоя. После этого краска смывается и на плате появляются детали микросхемы.

Практически каждому человеку известно определение электрического тока как Однако все дело в том, что происхождение и движение его в различных средах достаточно сильно отличается друг от друга. В частности, электрический ток в жидкостях обладает несколько другими свойствами, чем Речь идет о тех же металлических проводниках.

Основное отличие состоит в том, что ток в жидкостях - это движение заряженных ионов, то есть атомов или даже молекул, которые по какой-либо причине потеряли или приобрели электроны. При этом одним из показателей этого движения является изменение свойств того вещества, по которому данные ионы проходят. Опираясь на определение электрического тока, мы можем предположить, что при разложении отрицательно заряженные ионы будут двигаться в сторону положительного а положительные, наоборот, к отрицательному.

Процесс разложения молекул раствора на положительные и отрицательные заряженные ионы получил в науке название электролитической диссоциации. Таким образом, электрический ток в жидкостях возникает вследствие того, что, в отличие от того же металлического проводника, изменяется состав и химические свойства этих жидкостей, результатом чего является процесс перемещения заряженных ионов.

Электрический ток в жидкостях, его происхождение, количественные и качественные характеристики были одной из главных проблем, изучением которой долгое время занимался знаменитый физик М. Фарадей. В частности, с помощью многочисленных экспериментов ему удалось доказать, что масса выделяемого при электролизе вещества напрямую зависит от количества электричества и времени, в течении которого этот электролиз осуществлялся. Ни от каких других причин, за исключением рода вещества, эта масса не зависит.

Кроме того, изучая ток в жидкостях, Фарадей экспериментально выяснил, что для выделения одного килограмма любого вещества при электролизе необходимо одно и то же количество Это количество, равное 9,65.10 7 к., получило название числа Фарадея.

В отличие от металлических проводников, электрический ток в жидкостях оказывается окруженным которые значительно затрудняют передвижение ионов вещества. В связи с этим, в любом электролите возможно образование тока только небольшого напряжения. В то же время, если температура раствора повышается, то его проводимость увеличивается, а поля возрастает.

Электролиз обладает еще одним интересным свойством. Все дело в том, что вероятность распада той или иной молекулы на положительные и отрицательные заряженные ионы тем выше, чем большее число молекул собственно вещества и растворителя. В то же время, в определенный момент наступает перенасыщение раствора ионами, после чего проводимость раствора начинает снижаться. Таким образом, наиболее сильная будет проходить в растворе, где концентрация ионов крайне невелика, однако напряженность электрического тока в таких растворах будет крайне низкой.

Процесс электролиза нашел широкое применение в различных промышленных производствах, связанных с проведением электрохимических реакций. К числу наиболее важных из них можно отнести получение металла с помощью электролитов, электролиз солей, содержащих хлор и его производные, окислительно-восстановительные реакции, получение такого необходимого вещества, как водород, полировка поверхностей, гальваника. Например, на многих предприятиях машино- и приборостроения весьма распространен метод рафинирования, который представляет собой получение металла без всяких ненужных примесей.

Жидкости, как и любые другие вещества, могут быть проводниками, полупроводниками и диэлектриками. Например, дистиллированная вода будет являться диэлектриком, а растворы и расплавы электролитов будут являться проводниками. Полупроводниками будут являться, например, расплавленный селен или расплавы сульфидов.

Ионная проводимость

Электролитическая диссоциация - это процесс распадения молекул электролитов на ионы под действием электрического поля полярных молекул воды. Степенью диссоциации называется доля молекул распавшихся на ионы в растворенном веществе.

Степень диссоциации будет зависеть от различных факторов: температура, концентрация раствора, свойства растворителя. При увеличении температуры, степень диссоциации тоже будет увеличиваться.

После того как молекулы разделились на ионы, они движутся хаотично. При этом два иона разных знаков могут рекомбинироваться, то есть снова объединиться в нейтральные молекулы. При отсутствии внешних изменений в растворе должно установиться динамическое равновесие. При нем число молекул которое распалось на ионы за единицу времени, будет равняться числу молекул, которые снова объединятся.

Носителями зарядов в водных растворах и расплавах электролитов будут являться ионы. Если сосуд с раствором или расплавом включить в цепь, то положительно заряженные ионы начнут двигаться к катоду, а отрицательные – к аноду. В результате этого движения возникнет электрический ток. Данный вид проводимости называют ионной проводимостью.

Помимо ионной проводимости в жидкостях может обладать и электронной проводимостью. Такой тип проводимости свойственен, например, жидким металлам. Как отмечалось выше, при ионной проводимости прохождение тока связано с переносом вещества.

Электролиз

Вещества которые входят в состав электролитов, будут оседать на электродах. Этот процесс называется в электролизом. Электролиз – процесс выделения на электроде вещества, связанный с окислительно-восстановительными реакциями.

Электролиз нашел широкое применение в физике и технике. С помощью электролиза поверхность одного металла покрывают тонким слоем другого металла. Например, хромирование и никелирование.

С помощью электролиза можно получить копию с рельефной поверхности. Для этого необходимо, чтобы слой металла, который осядет на поверхности электрода, легко можно было снять. Для этого иногда на поверхность наносят графит.

Процесс получения таких легко отслаиваемых покрытий получил название гальвано-пластика. Этим метод разработал русский ученый Борис Якоби при изготовлении полых фигур для Исаакиевского собора с Санкт-Петербурге.

Жидкости по степени электропроводности делятся на:
диэлектрики (дистиллированная вода),
проводники (электролиты),
полупроводники (расплавленный селен).

Электролит

Это проводящая жидкость (растворы кислот, щелочей, солей и расплавленные соли).

Электролитическая диссоциация
(разъединение)

При растворении в результате теплового движения происходят столкновения молекул растворителя и нейтральных молекул электролита.
Молекулы распадаются на положительные и отрицательные ионы.

Явление электролиза

- сопровождает прохождение эл.тока через жидкость;
- это выделение на электродах веществ, входящих в электролиты;
Положительно заряженные анионы под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные катионы - к положительному аноду.
На аноде отрицательные ионы отдают лишние электроны (окислительная реакция)
На катоде положительные ионы получают недостающие электроны (восстановительная реакция).

Закон электролиза

1833г. - Фарадей

Закон электролиза определяет массу вещества, выделяемого на электроде при электролизе за время прохождения эл.тока.

k - электрохимический эквивалент вещества, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.
Зная массу выделившегося вещества, можно определить заряд электрона.

Например, растворение медного купороса в воде.

Электропроводность электролитов , способность электролитов проводить электрический ток при приложении электрического напряжения. Носителями тока являются положительно и отрицательно заряженные ионы - катионы ианионы, которые существуют в растворе вследствие электролитич.диссоциации. Ионная электропроводность электролитов, в отличие от электронной, характерной для металлов, сопровождается переносом вещества к электродам с образованием вблизи них новых химических соединений. Общая (суммарная) проводимость состоит из проводимости катионов и анионов, которые под действием внешнего электрического поля движутся в противоположных направлениях. Доля общего кол-ва электричества, переносимого отдельными ионами, называется числами переноса, сумма которых для всех видов ионов, участвующих в переносе, равна единице.

Полупроводник

Монокристаллическийкремний - полупроводниковый материал, наиболее широко используемый в промышленности на сегодняшний день

Полупроводни́к - материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры .

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам , а арсенид индия - к узкозонным . К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира - полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.

Механизм электрической проводимости[править | править вики-текст]

Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10 −19 Дж против 11,2·10 −19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10 −19 Дж), и отдельные электроны получают энергию для отрыва от ядра. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное электрическое сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5-2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка[править | править вики-текст]

Основная статья: Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Этот процесс обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.

Магнитное поле

Магни́тноепо́ле - силовое поле, действующее на движущиесяэлектрические заряды и на тела, обладающие магнитным моментом, независимо от состояния их движения ; магнитная составляющаяэлектромагнитного поля .

Магнитное поле может создаваться током заряженных частиц и/илимагнитными моментами электронов в атомах (и магнитными моментами других частиц, что обычно проявляется в существенно меньшей степени) (постоянные магниты).

Кроме этого, оно возникает в результате изменения во времениэлектрического поля.

Основной силовой характеристикой магнитного поля является вектор магнитной индукции (вектор индукции магнитного поля) . С математической точки зрения - векторное поле, определяющее и конкретизирующее физическое понятие магнитного поля. Нередко вектор магнитной индукции называется для краткости просто магнитным полем (хотя, наверное, это не самое строгое употребление термина).

Ещё одной фундаментальной характеристикой магнитного поля (альтернативной магнитной индукции и тесно с ней взаимосвязанной, практически равной ей по физическому значению) является векторный потенциал .

Источники магнитного поля[править | править вики-текст]

Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времениэлектрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам