Угловое расстояние. Кафедра: естественно научных дисциплин

Естественным спутником Земли является Луна — несветящееся тело, которое отражает солнечный свет.

Изучение Луны началось в 1959 г., когда советский аппарат «Луна-2» впервые сел на Луну, а с аппарата «Луна-3» впервые были сделаны из космоса снимки обратной стороны Луны.

В 1966 г. аппарат «Луна-9» совершил посадку на Луну и установил прочную структуру грунта.

Первыми, кто побывал на Луне, стали американцы Нейл Армстронг и Эдвин Олдрин. Это произошло 21 июля 1969 г. Советские ученые для дальнейшего изучения Луны предпочли использовать автоматические аппараты — луноходы.

Общие характеристики Луны

Средняя удаленность от Земли, км

  • а. е.
  • 363 104
  • 0,0024
  • а. е.
  • 405 696
  • 0,0027

Среднее расстояние между центрами Земли и Луны, км

Наклон орбиты к плоскости ее орбиты

Средняя орбитальная скорость

  • 1,022

Средний радиус Луны, км

Масса, кг

Экваториальный радиус, км

Полярный радиус, км

Средняя плотность, г/см 3

Наклон к экватору, град.

Масса Луны составляет 1/81 массы Земли. Положение Луны на орбите соответствует той или иной фазе (рис. 1).

Рис. 1. Фазы Луны

Фазы Луны — различные положения относительно Солнца — новолуние, первая четверть, полнолуние и последняя четверть. В полнолуние виден освещенный диск Луны, так как Солнце и Луна находятся на противоположных сторонах от Земли. В новолуние Луна находится на стороне Солнца, поэтому сторона Луны, обращенная к Земле, не освещается.

К Земле Луна обращена всегда одной стороной.

Линию, которая отделяет освещенную часть Луны от неосвещенной, называют терминатором.

В первой четверти Луна видна на угловом расстоянии 90" от Солнца, и солнечные лучи освещают лишь правую половину обращенной к нам Луны. В остальных фазах Луна видна нам в виде серпа. Поэтому, чтобы отличить растущую Луну от старой, надо помнить: старая Луна напоминает букву «С», а если Луна растущая, то можно мысленно перед Луной провести вертикальную линию и получится буква «Р».

Из-за близости Луны к Земле и ее большой массы они образуют систему «Земля-Луна». Луна и Земля вращаются вокруг своих осей в одну сторону. Плоскость орбиты Луны наклонена к плоскости орбиты Земли под углом 5°9".

Места пересечения орбит Земли и Луны называют узлами лунной орбиты.

Сидерический (от лат. сидерис — звезда) месяц — это период вращения Земли вокруг своей оси и одинакового положения Луны на небесной сфере по отношению к звездам. Он составляет 27,3 земных суток.

Синодическим (от греч. синод — соединение) месяцем называют период полной смены лунных фаз, т. е. период возвращения Луны в первоначальное положение относительно Луны и Солнца (например, от новолуния до новолуния). Он составляет в среднем 29,5 земных суток. Синодический месяц на двое суток длиннее сидерического, так как Земля и Луна вращаются вокруг своих осей в одну сторону.

Сила тяжести на Луне в 6 раз меньше силы тяжести на Земле.

Рельеф спутника Земли хорошо изучен. Видимые темные участки на поверхности Луны названы «морями» — это обширные безводные низменные равнины (самая крупная — «Оксан Бурь»), а светлые участки — «материками» — это гористые, возвышенные участки. Основные же планетарные структуры лунной поверхности — кольцевые кратеры диаметром до 20-30 км и многокольцевые цирки диаметром от 200 до 1000 км.

Происхождение у кольцевых структур различное: метеоритное, вулканическое и ударно-взрывное. Кроме этого, на поверхности Луны имеются трещины, сдвиги, купола и системы разломов.

Исследования космических аппаратов «Луна-16», «Луна-20», «Луна-24» показали, что поверхностные обломочные породы Луны сходны с земными магматическими породами — базальтами.

Значение Луны в жизни Земли

Хотя масса Луны в 27 млн раз меньше массы Солнца, она в 374 раза ближе к Земле и оказывает на нес сильное влияние, вызывая поднятия воды (приливы) в одних местах и отливы в других. Это происходит каждые 12 ч 25 мин, так как Луна делает полный оборот вокруг Земли за 24 ч 50 мин.

Из-за гравитационного воздействия Луны и Солнца на Землю возникают приливы и отливы (рис. 2).

Рис. 2. Схема возникновения приливов и отливов на Земле

Наиболее отчетливы и важны по своим следствиям прилив- но-отливные явления в волной оболочке. Они представляют собой периодические подъемы и опускания уровня океанов и морей, вызываемые силами притяжения Луны и Солнца (в 2,2 раза меньше лунной).

В атмосфере приливно-отливные явления проявляются в полусуточных изменениях атмосферного давления, а в земной коре — в деформации твердого вещества Земли.

На Земле наблюдаются 2 прилива в ближайшей и удаленной от Луны точке и 2 отлива в точках, находящихся на угловом расстоянии 90° от линии Луна — Земля. Выделяют сигизийные приливы, которые возникают в новолуние и полнолуние и квадратурные — в первой и последней четверти.

В открытом океане приливно-отливные явления невелики. Колебания уровня воды достигает 0,5-1 м. Во внутренних морях (Черное, Балтийское и др.) они почти не ощущаются. Однако в зависимости от географической широты и очертаний береговой линии материков (особенно в узких заливах) вода во время приливов может подниматься до 18 м (залив Фанди в Атлантическом океане у берегов Северной Америки), 13 м на западном побережье Охотского моря. При этом образуются приливно-отливные течения.

Основное значение приливных волн заключается в том, что, перемешаясь с востока на запад вслед за видимым движением Луны, они тормозят осевое вращение Земли и удлиняют сутки, изменяют фигуру Земли с помощью уменьшения полярного сжатия, вызывают пульсацию оболочек Земли, вертикальные смещения земной поверхности, полусуточные изменения атмосферного давления, изменяют условия органической жизни в прибрежных частях Мирового океана и, наконец, влияют на хозяйственную деятельность приморских стран. В целый ряд портов морские суда могут заходить только во время прилива.

Через определенный промежуток времени на Земле повторяются солнечные и лунные затмения. Увидеть их можно, когда Солнце, Земля и Луна находятся на одной линии.

Затмение — астрономическая ситуация, при которой одно небесное тело заслоняет свет от другого небесного тела.

Солнечное затмение происходит, когда Луна попадает между наблюдателем и Солнцем и загораживает его. Поскольку Луна перед затмением обращена к нам неосвещенной стороной, перед затмением всегда бывает новолуние, т. е. Луна не видна. Создается впечатление, что Солнце закрывается черным диском; наблюдающий с Земли видит это явление как солнечное затмение (рис. 3).

Рис. 3. Солнечное затмение (относительные размеры тел и расстояния между ними условны)

Лунное затмение наступает, когда Луна, находясь на одной прямой с Солнцем и Землей, попадает в конусообразную тень, отбрасываемую Землей. Диаметр пятна тени Земли равен минимальному расстоянию Луны от Земли — 363 000 км, что составляет около 2,5 диаметра Луны, поэтому Луна может быть затенена целиком (см. рис. 3).

Лунные ритмы — это повторяющиеся изменения интенсивности и характера биологических процессов. Существуют лунно-месячные (29,4 сут) и лунно-суточные (24,8 ч) ритмы. Многие животные, растения размножаются в определенную фазу лунного цикла. Лунные ритмы свойственны многим морским животным и растениям прибрежной зоны. Так, у людей замечено изменение самочувствия в зависимости от фаз лунного цикла.

Небо над головой - самый древний учебник геометрии. Первые понятия, такие как точка и круг, - оттуда. Скорее даже не учебник, а задачник. В котором отсутствует страничка с ответами. Два круга одинакового размера - Солнце и Луна - движутся по небу, каждый со своей скоростью. Остальные объекты - светящиеся точки - движутся все вместе, словно они прикреплены к сфере, вращающейся со скоростью 1 оборот в 24 часа. Правда, среди них есть исключения - 5 точек движутся как им вздумается. Для них подобрали особое слово - «планета», по-гречески - «бродяга». Сколько человечество существует, оно пытается разгадать законы этого вечного движения. Первый прорыв произошел в III веке до н.э., когда греческие ученые, взяв на вооружение молодую науку - геометрию, смогли получить первые результаты об устройстве Вселенной. Об этом и пойдет речь.

Чтобы иметь некоторое представление о сложности задачи, рассмотрим такой пример. Представим себе светящийся шар диаметром 10 см, неподвижно висящий в пространстве. Назовем его S. Вокруг него на расстоянии чуть больше 10 метров обращается маленький шарик Z диаметром 1 миллиметр, а вокруг Z на расстоянии 6 см обращается совсем крохотный шарик L, его диаметр - четверть миллиметра. На поверхности среднего шарика Z живут микроскопические существа. Они обладают неким разумом, но покидать пределы своего шарика не могут. Всё, что они могут, - смотреть на два других шара - S и L. Спрашивается, могут ли они узнать диаметры этих шаров и измерить расстояния до них? Сколько ни думай, дело, казалось бы, безнадежное. Мы нарисовали сильно уменьшенную модель Солнечной системы (S - Солнце, Z - Земля, L - Луна).

Вот такая задача стояла перед древними астрономами. И они ее решили! Более 22 веков назад, не пользуясь ничем, кроме самой элементарной геометрии - на уровне 8 класса (свойства прямой и окружности, подобные треугольники и теорема Пифагора). И, конечно, наблюдая за Луной и за Солнцем.

Над решением трудились несколько ученых. Мы выделим двух. Это математик Эратосфен, измеривший радиус земного шара, и астроном Аристарх, вычисливший размеры Луны, Солнца и расстояния до них. Как они это сделали?

Как измерили земной шар

То, что Земля не плоская, люди знали давно. Древние мореплаватели наблюдали, как постепенно меняется картина звездного неба: становятся видны новые созвездия, а другие, напротив, заходят за горизонт. Уплывающие вдаль корабли «уходят под воду», последними скрываются из вида верхушки их мачт. Кто первый высказал идею о шарообразности Земли, неизвестно. Скорее всего - пифагорейцы, считавшие шар совершеннейшей из фигур. Полтора века спустя Аристотель приводит несколько доказательств того, что Земля - шар. Главное из них: во время лунного затмения на поверхности Луны отчетливо видна тень от Земли, и эта тень круглая! С тех пор постоянно предпринимались попытки измерить радиус земного шара. Два простых способа изложены в упражнениях 1 и 2. Измерения, правда, получались неточными. Аристотель, например, ошибся более чем в полтора раза. Считается, что первым, кому удалось сделать это с высокой точностью, был греческий математик Эратосфен Киренский (276–194 до н. э.). Его имя теперь всем известно благодаря решету Эратосфена - способу находить простые числа (рис. 1).

Если вычеркнуть из натурального ряда единицу, затем вычеркивать все четные числа, кроме первого (самого числа 2), затем все числа, кратные трем, кроме первого из них (числа 3), и т. д., то в результате останутся одни простые числа. Среди современников Эратосфен был знаменит как крупнейший ученый-энциклопедист, занимавшийся не только математикой, но и географией, картографией и астрономией. Он долгое время возглавлял Александрийскую библиотеку - центр мировой науки того времени. Работая над составлением первого атласа Земли (речь, конечно, шла об известной к тому времени ее части), он задумал провести точное измерение земного шара. Идея была такова. В Александрии все знали, что на юге, в городе Сиена (современный Асуан), один день в году, в полдень, Солнце достигает зенита. Исчезает тень от вертикального шеста, на несколько минут освещается дно колодца. Происходит это в день летнего солнцестояния, 22 июня - день наивысшего положения Солнца на небе. Эратосфен направляет своих помощников в Сиену, и те устанавливают, что ровно в полдень (по солнечным часам) Солнце находится точно в зените. Одновременно (как написано в первоисточнике: «в тот же час»), т. е. в полдень по солнечным часам, Эратосфен измеряет длину тени от вертикального шеста в Александрии. Получился треугольник ABC (АС - шест, АВ - тень, рис. 2).

Итак, солнечный луч в Сиене (N ) перпендикулярен поверхности Земли, а значит, проходит через ее центр - точку Z . Параллельный ему луч в Александрии (А ) составляет угол γ = ACB с вертикалью. Пользуясь равенством накрест лежащих углов при параллельных, заключаем, что AZN = γ. Если обозначить через l длину окружности, а через х длину ее дуги AN , то получаем пропорцию . Угол γ в треугольнике АВС Эратосфен измерил, получилось 7,2°. Величина х - не что иное, как длина пути от Александрии до Сиены, примерно 800 км. Ее Эратосфен аккуратно вычисляет, исходя из среднего времени движения верблюжьих караванов, регулярно ходивших между двумя городами, а также используя данные бематистов - людей специальной профессии, измерявших расстояния шагами. Теперь осталось решить пропорцию , получив длину окружности (т. е. длину земного меридиана) l = 40000 км. Тогда радиус Земли R равен l /(2π), это примерно 6400 км. То, что длина земного меридиана выражается столь круглым числом в 40000 км, не удивительно, если вспомнить, что единица длины в 1 метр и была введена (во Франции в конце XVIII века) как одна сорокамиллионная часть окружности Земли (по определению!). Эратосфен, конечно, использовал другую единицу измерения - стадий (около 200 м). Стадиев было несколько: египетский, греческий, вавилонский, и каким из них пользовался Эратосфен - неизвестно. Поэтому трудно судить наверняка о точности его измерения. Кроме того, неизбежная ошибка возникала в силу географического положения двух городов. Эратосфен рассуждал так: если города находятся на одном меридиане (т. е. Александрия расположена в точности к северу от Сиены), то полдень в них наступает одновременно. Поэтому, сделав измерения во время наивысшего положения Солнца в каждом городе, мы должны получить правильный результат. Но на самом деле Александрия и Сиена - далеко не на одном меридиане. Сейчас в этом легко убедиться, взглянув на карту, но у Эратосфена такой возможности не было, он как раз и работал над составлением первых карт. Поэтому его метод (абсолютно верный!) привел к ошибке в определении радиуса Земли. Тем не менее, многие исследователи уверены, что точность измерения Эратосфена была высока и что он ошибся менее чем на 2%. Улучшить этот результат человечество смогло только через 2 тысячи лет, в середине XIX века. Над этим трудилась группа ученых во Франции и экспедиция В. Я. Струве в России. Даже в эпоху великих географических открытий, в XVI веке, люди не смогли достичь результата Эратосфена и пользовались неверным значением длины земной окружности в 37000 км. Ни Колумб, ни Магеллан не знали, каковы истинные размеры Земли и какие расстояния им придется преодолевать. Они-то считали, что длина экватора на 3 тысячи км меньше, чем на самом деле. Знали бы - может, и не поплыли бы.

В чем причина столь высокой точности метода Эратосфена (конечно, если он пользовался нужным стадием )? До него измерения были локальными, на расстояниях, обозримых человеческим глазом, т. е. не более 100 км. Таковы, например, способы в упражнениях 1 и 2. При этом неизбежны ошибки из-за рельефа местности, атмосферных явлений и т. д. Чтобы добиться большей точности, нужно проводить измерения глобально , на расстояниях, сравнимых с радиусом Земли. Расстояние в 800 км между Александрией и Сиеной оказалось вполне достаточным.

Упражнения
1. Как вычислить радиус Земли по следующим данным: с горы высотой 500 м просматриваются окрестности на расстоянии 80 км?
2. Как вычислить радиус Земли по следующим данным: корабль высотой 20 м, отплыв от берега на 16 км, полностью исчезает из вида?
3. Два друга - один в Москве, другой - в Туле, берут по метровому шесту и ставят их вертикально. В момент, в течение дня, когда тень от шеста достигает наименьшей длины, каждый из них измеряет длину тени. В Москве получилось а см, а в Туле - b см. Выразите радиус Земли через а и b. Города расположены на одном меридиане на расстоянии 185 км.

Как видно из упражнения 3, опыт Эратосфена можно проделать и в наших широтах, где Солнце никогда не бывает в зените. Правда, для этого нужны две точки обязательно на одном меридиане. Если же повторить опыт Эратосфена для Александрии и Сиены, и при этом сделать измерения в этих городах одновременно (сейчас для этого есть технические возможности), то мы получим верный ответ, при этом будет не важно, на каком меридиане находится Сиена (почему?).

Как измерили Луну и Солнце. Три шага Аристарха

Греческий остров Самос в Эгейском море - теперь глухая провинция. Сорок километров в длину, восемь - в ширину. На этом крохотном острове в разное время родились три величайших гения - математик Пифагор, философ Эпикур и астроном Аристарх. Про жизнь Аристарха Самосского известно мало. Даты жизни приблизительны: родился около 310 до н.э., умер около 230 до н.э. Как он выглядел, мы не знаем, ни одного изображения не сохранилось (современный памятник Аристарху в греческом городе Салоники - лишь фантазия скульптора) . Много лет провел в Александрии, где работал в библиотеке и в обсерватории. Главное его достижение - книга «О величинах и расстояниях Солнца и Луны», - по единодушному мнению историков, является настоящим научным подвигом. В ней он вычисляет радиус Солнца, радиус Луны и расстояния от Земли до Луны и до Солнца. Сделал он это в одиночку, пользуясь очень простой геометрией и всем известными результатами наблюдений за Солнцем и Луной. На этом Аристарх не останавливается, он делает несколько важнейших выводов о строении Вселенной, которые намного опередили свое время. Не случайно его назвали впоследствии «Коперником античности».

Вычисление Аристарха можно условно разбить на три шага. Каждый шаг сводится к простой геометрической задаче. Первые два шага совсем элементарны, третий - чуть посложнее. В геометрических построениях мы будем обозначать через Z , S и L центры Земли, Солнца и Луны соответственно, а через R , R s и R l - их радиусы. Все небесные тела будем считать шарами, а их орбиты - окружностями, как и считал сам Аристарх (хотя, как мы теперь знаем, это не совсем так). Мы начинаем с первого шага, и для этого немного понаблюдаем за Луной.

Шаг 1. Во сколько раз Солнце дальше, чем Луна?

Как известно, Луна светит отраженным солнечным светом. Если взять шар и посветить на него со стороны большим прожектором, то в любом положении освещенной окажется ровно половина поверхности шара. Граница освещенной полусферы - окружность, лежащая в плоскости, перпендикулярной лучам света. Таким образом, Солнце всегда освещает ровно половину поверхности Луны. Видимая нам форма Луны зависит от того, как расположена эта освещенная половина. При новолунии , когда Луна вовсе не видна на небе, Солнце освещает ее обратную сторону. Затем освещенная полусфера постепенно поворачивается в сторону Земли. Мы начинаем видеть тонкий серп, затем - месяц («растущая Луна»), далее - полукруг (эта фаза Луны называется «квадратурой»). Затем день ото дня (вернее, ночь от ночи) полукруг дорастает до полной Луны. Потом начинается обратный процесс: освещенная полусфера от нас отворачивается. Луна «стареет», постепенно превращаясь в месяц, повернутый к нам левой стороной, подобно букве «С», и, наконец, в ночь новолуния исчезает. Период от одного новолуния до другого длится примерно четыре недели. За это время Луна совершает полный оборот вокруг Земли. От новолуния до половины Луны проходит четверть периода, отсюда и название «квадратура».

Замечательная догадка Аристарха состояла в том, что при квадратуре солнечные лучи, освещающие половину Луны, перпендикулярны прямой, соединяющей Луну с Землей. Таким образом, в треугольнике ZLS угол при вершине L - прямой (рис. 3). Если теперь измерить угол LZS , обозначим его через α, то получим, что = cos α. Для простоты мы считаем, что наблюдатель находится в центре Земли. Это несильно повлияет на результат, поскольку расстояния от Земли до Луны и до Солнца значительно превосходят радиус Земли. Итак, измерив угол α между лучами ZL и ZS во время квадратуры, Аристарх вычисляет отношение расстояний до Луны и до Солнца. Как одновременно застать Солнце и Луну на небосводе? Это можно сделать ранним утром. Сложность возникает по другому, неожиданному, поводу. Во времена Аристарха не было косинусов. Первые понятия тригонометрии появятся позже, в работах Аполлония и Архимеда. Но Аристарх знал, что такое подобные треугольники, и этого было достаточно. Начертив маленький прямоугольный треугольник Z"L"S" с тем же острым углом α = L"Z"S" и измерив его стороны, находим, что , и это отношение примерно равно 1/400.

Шаг 2. Во сколько раз Солнце больше Луны?

Для того чтобы найти отношение радиусов Солнца и Луны, Аристарх привлекает солнечные затмения (рис. 4). Они происходят, когда Луна загораживает Солнце. При частичном, или, как говорят астрономы, частном , затмении Луна лишь проходит по диску Солнца, не закрывая его полностью. Порой такое затмение даже нельзя разглядеть невооруженным глазом, Солнце светит как в обычный день. Лишь сквозь сильное затемнение, например, закопченное стекло, видно, как часть солнечного диска закрыта черным кругом. Гораздо реже происходит полное затмение, когда Луна на несколько минут полностью закрывает солнечный диск.

В это время становится темно, на небе появляются звезды. Затмения наводили ужас на древних людей, считались предвестниками трагедий. Солнечное затмение наблюдается по-разному в разных частях Земли. Во время полного затмения на поверхности Земли возникает тень от Луны - круг, диаметр которого не превосходит 270 км. Лишь в тех районах земного шара, по которым проходит эта тень, можно наблюдать полное затмение. Поэтому в одном и том же месте полное затмение происходит крайне редко - в среднем раз в 200–300 лет. Аристарху повезло - он смог наблюдать полное солнечное затмение собственными глазами. На безоблачном небе Солнце постепенно начало тускнеть и уменьшаться в размерах, установились сумерки. На несколько мгновений Солнце исчезло. Потом проглянул первый луч света, солнечный диск стал расти, и вскоре Солнце засветило в полную силу. Почему затмение длится столь короткое время? Аристарх отвечает: причина в том, что Луна имеет те же видимые размеры на небе, что и Солнце. Что это значит? Проведем плоскость через центры Земли, Солнца и Луны. Получившееся сечение изображено на рисунке 5a . Угол между касательными, проведенными из точки Z к окружности Луны, называется угловым размером Луны, или ее угловым диаметром. Так же определяется угловой размер Солнца. Если угловые диаметры Солнца и Луны совпадают, то они имеют одинаковые видимые размеры на небе, а при затмении Луна действительно полностью загораживает Солнце (рис. 5б ), но лишь на мгновение, когда совпадут лучи ZL и ZS . На фотографии полного солнечного затмения (см. рис. 4) ясно видно равенство размеров.

Вывод Аристарха оказался поразительно точен! В реальности средние угловые диаметры Солнца и Луны отличаются всего на 1,5%. Мы вынуждены говорить о средних диаметрах, поскольку они меняются в течение года, так как планеты движутся не по окружностям, а по эллипсам.

Соединив центр Земли Z с центрами Солнца S и Луны L , а также с точками касания Р и Q , получим два прямоугольных треугольника ZSP и ZLQ (см. рис. 5a ). Они подобны, поскольку у них есть пара равных острых углов β/2. Следовательно, . Таким образом, отношение радиусов Солнца и Луны равно отношению расстояний от их центров до центра Земли . Итак, R s /R l = κ = 400. Несмотря на то, что их видимые размеры равны, Солнце оказалось больше Луны в 400 раз!

Равенство угловых размеров Луны и Солнца - счастливое совпадение. Оно не вытекает из законов механики. У многих планет Солнечной системы есть спутники: у Марса их два, у Юпитера - четыре (и еще несколько десятков мелких), и все они имеют разные угловые размеры, не совпадающие с солнечным.

Теперь мы приступаем к решающему и самому сложному шагу.

Шаг 3. Вычисление размеров Солнца и Луны и расстояний до них

Итак, нам известно отношение размеров Солнца и Луны и отношение их расстояний до Земли. Эта информация относительна : она восстанавливает картину окружающего мира лишь с точностью до подобия. Можно удалить Луну и Солнце от Земли в 10 раз, увеличив во столько же раз их размеры, и видимая с Земли картина останется такой же. Чтобы найти реальные размеры небесных тел, надо соотнести их с каким-то известным размером. Но из всех астрономических величин Аристарху пока известен только радиус земного шара R = 6400 км. Поможет ли это? Хоть в каком-то из видимых явлений, происходящих на небе, появляется радиус Земли? Не случайно говорят «небо и земля», имея в виду две несовместные вещи. И всё же такое явление есть. Это - лунное затмение. С его помощью, применив довольно хитроумное геометрическое построение, Аристарх вычисляет отношение радиуса Солнца к радиусу Земли, и цепь замыкается: теперь мы одновременно находим радиус Луны, радиус Солнца, а заодно и расстояния от Луны и от Солнца до Земли.

При лунном затмении Луна уходит в тень Земли. Спрятавшись за Землю, Луна лишается солнечного света, и, таким образом, перестает светить. Она не исчезает из вида полностью, поскольку небольшая часть солнечного света рассеивается земной атмосферой и доходит до Луны в обход Земли. Луна темнеет, приобретая красноватый оттенок (через атмосферу лучше всего проходят красные и оранжевые лучи). На лунном диске при этом отчетливо видна тень от Земли (рис. 6). Круглая форма тени еще раз подтверждает шарообразность Земли. Аристарха же интересовал размер этой тени. Для того, чтобы определить радиус круга земной тени (мы сделаем это по фотографии на рисунке 6), достаточно решить простое упражнение.

Упражнение 4. На плоскости дана дуга окружности. С помощью циркуля и линейки постройте отрезок, равный ее радиусу.

Выполнив построение, находим, что радиус земной тени примерно в раза больше радиуса Луны. Обратимся теперь к рисунку 7. Серым цветом закрашена область земной тени, в которую попадает Луна при затмении. Предположим, что центры окружностей S , Z и L лежат на одной прямой. Проведем диаметр Луны M 1 M 2 , перпендикулярный прямой LS. Продолжение этого диаметра пересекает общие касательные окружностей Солнца и Земли в точках D 1 и D 2 . Тогда отрезок D 1 D 2 приближенно равен диаметру тени Земли. Мы пришли к следующей задаче.

Задача 1. Даны три окружности с центрами S , Z и L , лежащими на одной прямой. Отрезок D 1 D 2 , проходящий через L , перпендикулярен прямой SL , а его концы лежат на общих внешних касательных к первой и второй окружностям. Известно, что отношение отрезка D 1 D 2 к диаметру третьей окружности равно t , а отношение диаметров первой и третьей окружности равно ZS /ZL = κ. Найдите отношение диаметров первой и второй окружностей.

Если решить эту задачу, то будет найдено отношение радиусов Солнца и Земли. Значит, будет найден радиус Солнца, а с ним и Луны. Но решить ее не удастся. Можете попробовать - в задаче не достает одного данного. Например, угла между общими внешними касательными к первым двум окружностям. Но даже если этот угол был бы известен, решение будет использовать тригонометрию, которую Аристарх не знал (мы формулируем соответствующую задачу в упражнении 6). Он находит более простой выход. Проведем диаметр A 1 A 2 первой окружности и диаметр B 1 B 2 второй, оба - параллельные отрезку D 1 D 2 . Пусть C 1 и С 2 - точки пересечения отрезка D 1 D 2 с прямыми A 1 B 1 и А 2 В 2 соответственно (рис. 8). Тогда в качестве диаметра земной тени возьмем отрезок C 1 C 2 вместо отрезка D 1 D 2 . Стоп, стоп! Что значит, «возьмем один отрезок вместо другого»? Они же не равны! Отрезок C 1 C 2 лежит внутри отрезка D 1 D 2 , значит C 1 C 2 < D 1 D 2. Да, отрезки разные, но они почти равны. Дело в том, что расстояние от Земли до Солнца во много раз больше диаметра Солнца (примерно в 215 раз). Поэтому расстояние ZS между центрами первой и второй окружности значительно превосходит их диаметры. Значит, угол между общими внешними касательными к этим окружностям близок к нулю (в реальности он примерно 0,5°), т. е. касательные «почти параллельны». Если бы они были в точности параллельны, то точки A 1 и B 1 совпадали бы с точками касания, следовательно, точка C 1 совпала бы с D 1 , а C 2 с D 2 , и значит, C 1 C 2 = D 1 D 2 . Таким образом, отрезки C 1 C 2 и D 1 D 2 почти равны. Интуиция и здесь не подвела Аристарха: на самом деле отличие между длинами отрезков составляет менее сотой доли процента! Это - ничто по сравнению с возможными погрешностями измерений. Убрав теперь лишние линии, включая окружности и их общие касательные, приходим к такой задаче.

Задача 1". На боковых сторонах трапеции А 1 А 2 С 2 С 1 взяты точки B 1 и В 2 так, что отрезок В 1 В 2 параллелен основаниям. Пусть S , Z u L - середины отрезков А 1 А 2 , B 1 B 2 и C 1 C 2 соответственно. На основании C 1 C 2 лежит отрезок М 1 М 2 с серединой L . Известно, что и . Найдите А 1 А 2 /B 1 B 2 .

Решение. Так как , то , а значит, треугольники A 2 SZ и M 1 LZ подобны с коэффициентом SZ /LZ = κ. Следовательно, A 2 SZ = M 1 LZ , и поэтому точка Z лежит на отрезке M 1 A 2 . Аналогично, Z лежит на отрезке М 2 А 1 (рис. 9). Так как C 1 C 2 = t·М 1 М 2 и , то .

Следовательно,

С другой стороны,

Значит, . Из этого равенства сразу получаем, что .

Итак, отношение диаметров Солнца и Земли равно , а Луны и Земли равно .

Подставляя известные нам величины κ = 400 и t = 8/3, получаем, что Луна примерно в 3,66 раза меньше Земли, а Солнце в 109 раз больше Земли. Так как радиус Земли R нам известен, находим радиус Луны R l = R /3,66 и радиус Солнца R s = 109R .

Теперь расстояния от Земли до Луны и до Солнца вычисляются в один шаг, это может быть сделано с помощью углового диаметра. Угловой диаметр β Солнца и Луны составляет примерно полградуса (если быть совсем точным, 0,53°). Как древние астрономы его измеряли, об этом речь впереди. Опустив касательную ZQ на окружность Луны, получаем прямоугольный треугольник ZLQ с острым углом β/2 (рис. 10).

Из него находим , что примерно равно 215R l , или 62R . Аналогично, расстояние до Солнца равно 215R s = 23 455R .

Всё. Размеры Солнца и Луны и расстояния до них найдены.

Упражнения
5. Докажите, что прямые A 1 B 1 , A 2 B 2 и две общие внешние касательные к первой и второй окружностям (см. рис. 8) пересекаются в одной точке.
6. Решите задачу 1, если дополнительно известен угол между касательными между первой и второй окружностью.
7. Солнечное затмение может наблюдаться в одних частях земного шара и не наблюдаться других. А лунное затмение?
8. Докажите, что солнечное затмение может наблюдаться только во время новолуния, а лунное затмение - только во время полнолуния.
9. Что происходит на Луне, когда на Земле происходит лунное затмение?

О пользе ошибок

На самом деле всё было несколько сложнее. Геометрия только формировалась, и многие привычные для нас еще с восьмого класса школы вещи были в то время совсем не очевидны. Аристарху потребовалось написать целую книгу, чтобы изложить то, что мы изложили на трех страницах. И с экспериментальными измерениями тоже всё было непросто. Во-первых, Аристарх ошибся с измерением диаметра земной тени во время лунного затмения, получив отношение t = 2 вместо . Кроме того, он, вроде бы, исходил из неверного значения угла β - углового диаметра Солнца, считая его равным 2°. Но эта версия спорная: Архимед в своем трактате «Псаммит» пишет, что, напротив, Аристарх пользовался почти правильным значением в 0,5°. Однако самая ужасная ошибка произошла на первом шаге, при вычислении параметра κ - отношения расстояний от Земли до Солнца и до Луны. Вместо κ = 400 у Аристарха получилось κ = 19. Как можно было ошибиться более чем в 20 раз? Обратимся еще раз к шагу 1, рисунок 3. Для того чтобы найти отношение κ = ZS /ZL , Аристарх измерил угол α = SZL , и тогда κ = 1/cos α. Например, если угол α был бы равен 60°, то мы получили бы κ = 2, и Солнце было бы вдвое дальше от Земли, чем Луна. Но результат измерения оказался неожиданным: угол α получался почти прямым. Это означало, что катет ZS во много раз превосходит ZL . У Аристарха получилось α = 87°, и тогда cos α =1/19 (напомним, что все вычисления у нас - приближенные). Истинное значение угла , и cos α =1/400. Так погрешность измерения менее чем в 3° привела к ошибке в 20 раз! Завершив вычисления, Аристарх приходит к выводу, что радиус Солнца равен 6,5 радиусов Земли (вместо 109).

Ошибки были неизбежны, учитывая несовершенные измерительные приборы того времени. Важнее то, что метод оказался правильным. Вскоре (по историческим меркам, т. е. примерно через 100 лет) выдающийся астроном античности Гиппарх (190 – ок. 120 до н.э.) устранит все неточности и, следуя методу Аристарха, вычислит правильные размеры Солнца и Луны. Возможно, ошибка Аристарха оказалась в конце концов даже полезной. До него господствовало мнение, что Солнце и Луна либо вовсе имеют одинаковые размеры (как и кажется земному наблюдателю), либо отличаются несильно. Даже отличие в 19 раз удивило современников. Поэтому не исключено, что, найди Аристарх правильное отношение κ = 400, в это никто бы не поверил, а может быть, и сам ученый отказался бы от своего метода, сочтя результат несуразным. Известный принцип гласит, что геометрия - это искусство хорошо рассуждать на плохо выполненных чертежах. Перефразируя, можно сказать, что наука в целом - это искусство делать верные выводы из неточных, или даже ошибочных, наблюдений. И Аристарх такой вывод сделал. За 17 веков до Коперника он понял, что в центре мира находится не Земля, а Солнце. Так впервые появилась гелиоцентрическая модель и понятие Солнечной системы.

Что в центре?

Господствовавшее в Древнем Мире представление об устройстве Вселенной, знакомое нам по урокам истории, заключалось в том, что в центре мира - неподвижная Земля, вокруг нее по круговым орбитам вращаются 7 планет, включая Луну и Солнце (которое тоже считалось планетой). Завершается всё небесной сферой с прикрепленными к ней звездами. Сфера вращается вокруг Земли, делая полный оборот за 24 часа. Со временем в эту модель многократно вносились исправления. Так, стали считать, что небесная сфера неподвижна, а Земля вращается вокруг своей оси. Затем стали исправлять траектории движения планет: круги заменили циклоидами, т. е. линиями, которые описывают точки окружности при ее движении по другой окружности (об этих замечательных линиях можно прочитать в книгах Г. Н. Бермана «Циклоида», А. И. Маркушевича «Замечательные кривые», а также в «Кванте»: статья С. Верова «Тайны циклоиды» №8, 1975, и статья С. Г. Гиндикина «Звездный век циклоиды», №6, 1985). Циклоиды лучше согласовывались с результатами наблюдений, в частности, объясняли «попятные» движения планет. Это - геоцентрическая система мира, в центре которой - Земля («гея»). Во II веке она приняла окончательный вид в книге «Альмагест» Клавдия Птолемея (87–165), выдающегося греческого астронома, однофамильца египетских царей. Со временем некоторые циклоиды усложнялись, добавлялись всё новые промежуточные окружности. Но в целом система Птолемея господствовала около полутора тысячелетий, до XVI века, до открытий Коперника и Кеплера. Поначалу геоцентрической модели придерживался и Аристарх. Однако, вычислив, что радиус Солнца в 6,5 раз больше радиуса Земли, он задал простой вопрос: почему такое большое Солнце должно вращаться вокруг такой маленькой Земли? Ведь если радиус Солнца больше в 6,5 раз, то его объем больше почти в 275 раз! Значит, в центре мира должно находиться Солнце. Вокруг него вращаются 6 планет, включая Землю. А седьмая планета, Луна, вращается вокруг Земли. Так появилась гелиоцентрическая система мира («гелиос» - Солнце). Уже сам Аристарх отмечал, что такая модель лучше объясняет видимое движение планет по круговым орбитам, лучше согласуется с результатами наблюдений. Но ее не приняли ни ученые, ни официальные власти. Аристарх был обвинен в безбожии и подвергся преследованиям. Из всех астрономов античности только Селевк стал сторонником новой модели. Больше ее не принял никто, по крайней мере, у историков нет твердых сведений на этот счет. Даже Архимед и Гиппарх, почитавшие Аристарха и развившие многие его идеи, не решились поставить Солнце в центр мира. Почему?

Почему мир не принял гелиоцентрической системы?

Как же получилось, что в течение 17 веков ученые не принимали простой и логичной системы мира, предложенной Аристархом? И это несмотря на то, что официально признанная геоцентрическая система Птолемея часто давала сбои, не согласуясь с результатами наблюдений за планетами и за звездами. Приходилось добавлять всё новые окружности (так называемые вложенные циклы) для «правильного» описания движения планет. Самого Птолемея трудности не пугали, он писал: «К чему удивляться сложному движению небесных тел, если их сущность нам неизвестна?» Однако уже к XIII веку этих окружностей накопилось 75! Модель стала столь громоздкой, что начали раздаваться осторожные возражения: неужели мир в самом деле устроен так сложно? Широко известен случай с Альфонсом X (1226–1284), королем Кастилии и Леона, государства, занимавшего часть современной Испании. Он, покровитель наук и искусств, собравший при своем дворе пятьдесят лучших астрономов мира, на одной из научных бесед обмолвился, что «если бы при сотворении мира Господь оказал мне честь и спросил моего совета, многое было бы устроено проще». Подобная дерзость не прощалась даже королям: Альфонс был низложен и отправлен в монастырь. Но сомнения остались. Часть из них можно было бы разрешить, поставив Солнце в центр Вселенной и приняв систему Аристарха. Его труды были хорошо известны. Однако еще много веков никто из ученых не решался на такой шаг. Причины были не только в страхе перед властями и официальной церковью, которая считала теорию Птолемея единственно верной. И не только в инертности человеческого мышления: не так-то просто признать, что наша Земля - не центр мира, а лишь рядовая планета. Все-таки для настоящего ученого ни страх, ни стереотипы - не препятствия на пути к истине. Гелиоцентрическая система отвергалась по вполне научным, можно даже сказать, геометрическим причинам. Если допустить, что Земля вращается вокруг Солнца, то ее траектория - окружность с радиусом, равным расстоянию от Земли до Солнца. Как мы знаем, это расстояние равно 23 455 радиусов Земли, т. е. более 150 миллионов километров. Значит, Земля в течение полугода перемещается на 300 миллионов километров. Гигантская величина! Но картина звездного неба для земного наблюдателя при этом остается такой же. Земля то приближается, то удаляется от звезд на 300 миллионов километров, но ни видимые расстояния между звездами (например, форма созвездий), ни их яркость не меняются. Это означает, что расстояния до звезд должны быть еще в несколько тысяч раз больше, т. е. небесная сфера должна иметь совершенно невообразимые размеры! Это, между прочим, осознавал и сам Аристарх, который писал в своей книге: «Объем сферы неподвижных звезд во столько раз больше объема сферы с радиусом Земля-Солнце, во сколько раз объем последней больше объема земного шара», т. е. по Аристарху выходило, что расстояние до звезд равно (23 455) 2 R , это более 3,5 триллионов километров. В реальности расстояние от Солнца до ближайшей звезды еще примерно в 11 раз больше. (В модели, которую мы представили в самом начале, когда расстояние от Земли до Солнца равно 10 м, расстояние до ближайшей звезды равно... 2700 километров!) Вместо компактного и уютного мира, в центре которого находится Земля и который помещается внутри относительно небольшой небесной сферы, Аристарх нарисовал бездну. И эта бездна испугала всех.

Венера, Меркурий и невозможность геоцентрической системы

Между тем невозможность геоцентрической системы мира, с круговыми движениями всех планет вокруг Земли, может быть установлена с помощью простой геометрической задачи.

Задача 2. Наплоскости даны две окружности с общим центром О , по ним равномерно движутся две точки: точка М по одной окружности и точка V по другой. Докажите, что либо они двигаются в одном направлении с одинаковой угловой скоростью, либо в некоторый момент времени угол MOV тупой.

Решение. Если точки движутся в одном направлении с разными скоростями, то через некоторое время лучи ОМ и OV окажутся сонаправленными. Далее угол MOV начинает монотонно возрастать до следующего совпадения, т. е. до 360°. Следовательно, в некоторый момент он равен 180°. Случай, когда точки движутся в разных направлениях, рассматривается так же.

Теорема. Ситуация, при которой все планеты Солнечной системы равномерно вращаются вокруг Земли по круговым орбитам, невозможна.

Доказательство. Пусть О - центр Земли, М - центр Меркурия, а V - центр Венеры. Согласно многолетним наблюдениям, у Меркурия и Венеры разные периоды обращения, а угол MOV никогда не превосходит 76°. В силу результата задачи 2 теорема доказана.

Конечно, древние греки неоднократно встречались с подобными парадоксами. Именно поэтому, чтобы спасти геоцентрическую модель мира, они заставили планеты двигаться не по окружностям, а по циклоидам.

Доказательство теоремы не совсем честно, поскольку Меркурий и Венера вращаются не в одной плоскости, как в задаче 2, а в разных. Хотя плоскости их орбит почти совпадают: угол между ними - всего несколько градусов. В упражнении 10 мы предлагаем вам устранить этот недостаток и решить аналог задачи 2 для точек, вращающихся в разных плоскостях. Другое возражение: может быть, угол MOV бывает тупым, но мы этого не видим, поскольку на Земле в это время день? Принимаем и это. В упражнении 11 нужно доказать, что для трех вращающихся радиусов всегда настанет момент времени, когда они будут образовывать друг с другом тупые углы. Если на концах радиусов - Меркурий, Венера и Солнце, то в этот момент времени Меркурий и Венера будут видны на небе, а Солнце - нет, т. е. на земле будет ночь. Но должны предупредить: упражнения 10 и 11 значительно сложнее задачи 2. Наконец, в упражнении 12 мы предлагаем вам, ни много ни мало, вычислить расстояние от Венеры до Солнца и от Меркурия до Солнца (они, конечно, вращаются вокруг Солнца, а не вокруг Земли). Убедитесь сами, насколько это просто, после того, как мы узнали метод Аристарха.

Упражнения
10. В пространстве даны две окружности с общим центром О , по ним равномерно с разными угловыми скоростями движутся две точки: точка М по одной окружности и точка V по другой. Докажите, что в некоторый момент угол MOV тупой.
11. На плоскости даны три окружности с общим центром О , по ним равномерно с разными угловыми скоростями движутся три точки. Докажите, что в некоторый момент все три угла между лучами с вершиной О , направленными в данные точки, тупые.
12. Известно, что максимальное угловое расстояние между Венерой и Солнцем, т. е. максимальный угол между лучами, направленными с Земли к центрам Венеры и Солнца, равно 48°. Найдите радиус орбиты Венеры. То же - для Меркурия, если известно, что максимальное угловое расстояние между Меркурием и Солнцем равно 28°.

Последний штрих: измерение угловых размеров Солнца и Луны

Следуя шаг за шагом рассуждениям Аристарха, мы упустили лишь один аспект: как измерялся угловой диаметр Солнца? Сам Аристарх этого не делал, пользуясь измерениями других астрономов (по-видимому, не совсем верными). Напомним, что радиусы Солнца и Луны он смог вычислить, не привлекая их угловые диаметры. Посмотрите еще раз на шаги 1, 2 и 3: нигде значение углового диаметра не используется! Он нужен только для вычисления расстояний до Солнца и до Луны. Попытка определить угловой размер «на глазок» успеха не приносит. Если попросить несколько человек оценить угловой диаметр Луны, большинство назовут угол от 3 до 5 градусов, что в разы больше истинного значения. Сказывается обман зрения: ярко-белая Луна на фоне темного неба кажется массивной. Первым, кто провел математически строгое измерение углового диаметра Солнца и Луны, был Архимед (287- 212до н.э.) Он изложил свой метод в книге «Псаммит» («Исчисление песчинок»). Сложность задачи он осознавал: «Получить точное значение этого угла - дело нелегкое, потому что ни глаз, ни руки, ни приборы, при помощи которых производится отсчет, не обеспечивают достаточной точности». Поэтому Архимед не берется вычислить точное значение углового диаметра Солнца, он лишь оценивает его сверху и снизу. Он помещает круглый цилиндр на конце длинной линейки, напротив глаза наблюдателя. Линейка направляется на Солнце, и цилиндр придвигается к глазу до тех пор, пока он не заслонит собой Солнце полностью. Затем наблюдатель уходит, а на конце линейки отмечается отрезок MN , равный размеру человеческого зрачка (рис. 11).

Тогда угол α 1 между прямыми МР и NQ меньше углового диаметра Солнца, а угол α 2 = POQ - больше. Мы обозначили через PQ диаметр основания цилиндра, а через О - середину отрезка MN . Итак, α 1 < β < α 2 (докажите это в упражнении 13). Так Архимед находит, что угловой диаметр Солнца заключен в пределах от 0,45° до 0,55°.

Неясным остается, почему Архимед измеряет Солнце, а не Луну. Он был хорошо знаком с книгой Аристарха и знал, что угловые диаметры Солнца и Луны одинаковы. Луну же измерять гораздо удобнее: она не слепит глаза и границы ее видны отчетливее.

Некоторые древние астрономы измеряли угловой диаметр Солнца, исходя из продолжительности солнечного или лунного затмения. (Попробуйте восстановить этот способ в упражнении 14.) А можно сделать то же, не дожидаясь затмений, а просто наблюдая закат Солнца. Выберем для этого день весеннего равноденствия 22 марта, когда Солнце восходит точно на востоке, а заходит точно на западе. Это означает, что точки восхода Е и заката W диаметрально противоположны. Для земного наблюдателя Солнце движется по окружности с диаметром EW . Плоскость этой окружности составляет с плоскостью горизонта угол 90° – γ, где γ - географическая широта точки М , в которой находится наблюдатель (например, для Москвы γ = 55,5°, для Александрии γ = 31°). Доказательство приведено на рисунке 12. Прямая ZP - ось вращения Земли, перпендикулярная плоскости экватора. Широта точки М - угол между отрезком ZP и плоскостью экватора. Проведем через центр Солнца S плоскость α, перпендикулярную оси ZP .

Плоскость горизонта касается земного шара в точке М . Для наблюдателя, находящегося в точке М , Солнце в течение дня движется по окружности в плоскости α с центром Р и радиусом PS . Угол между плоскостью α и плоскостью горизонта равен углу MZP , который равен 90° – γ, поскольку плоскость α перпендикулярна ZP , а плоскость горизонта перпендикулярна ZM . Итак, в день равноденствия Солнце заходит за горизонт под углом 90° – γ. Следовательно, во время заката оно проходит дугу окружности, равную β/cos γ, где β - угловой диаметр Солнца (рис. 13). С другой стороны, за 24 часа оно проходит по этой окружности полный оборот, т. е. 360°.

Получаем пропорцию где Именно шесть, а не девять, поскольку Уран, Нептун и Плутон были открыты гораздо позже. Совсем недавно, 13 сентября 2006 года, по решению Международного астрономического союза (IAU) Плутон лишился статуса планеты. Так что планет в Солнечной системе теперь восемь.
Истинной причиной опалы короля Альфонса была, видимо, обычная борьба за власть, но его ироничное замечание об устройстве мира послужило веским поводом для его недругов.

-- [ Страница 1 ] --

МЕЖДУНАРОДНАЯ АКАДЕМИЯ УПРАВЛЕНИЯ, ПРАВА,

ФИНАНСОВ И БИЗНЕСА.

КАФЕДРА: ЕСТЕСТВЕННО НАУЧНЫХ ДИСЦИПЛИН

Н. К. ЖАКЫПБАЕВА, А. А. АБДЫРАМАНОВА

АСТРОНОМИЯ

Для студентов учебных заведений

Среднего профессионального образования

Бишкек 201

Печатается по решению Методического совета Международной Академии Управления, Права, Финансов и Бизнеса.



Рецензент:

Орозмаматов С. Т. Зав. каф. Физики КНАУ кандидат физмат наук доцент.

Жакыпбаева Н. К. Абдыраманова А. А.

Ж. 22 Астрономия – для студентов учебных заведений среднего профессионального образования // -Б.: 2011.-124ст.

Данное пособие помогает глубже понять законы движения и развитие небесных тел, узнать причины солнечных и лунных затмений, проявление комет и других небесных явлений, ознакомиться общими сведениями о Вселенной, что в них происходят непрерывное изменения, которые изучает астрономия. Пособие в отличие от учебника астрономии 11 классов содержит таблиц последних астрономических наблюдений и космических исследований ББК. 22.3 Ж. – 22 ©Жакыпбаева Н. К. Абдыраманова А. А.

Международной Академии Управления, Права, Финансов и Бизнеса. 2011 Содержание Предмет астрономии …………………………………………………...4 1.

Наблюдение-основа астрономии………………………..…………….6 2.

Звезды и созвездия ………………………………………………….....12 3.

Движение и фазы луны ………………………………………………..14 4.

Затмения Солнце и Луны ………………………………………….....17 5.

Строение солнечной системы ………………………………………...19 6.

Законы движение планет солнечной системе……………………..….24 7.

Определение расстояний и размеров светил…………………………28 8.

Движение небесных тел под действием сил тяготения……………...33 9.

Общие характеристики планет………………………………………...41 10.

Солнечная система как комплекс тел, имеющих общее 11.

происхождения …………..…………………………………………….42 Система земля-луна…………………………………………………….44 12.

Планеты земной группы……………………………………………….50 13.

Далекие планеты………………………………………………………..57 14.

Малые тела солнечной системы………………………………………61 15.

Солнце - ближайшая звезда…………………………………………....71 16.

Массы и размеры звезд…………………………………

Наша Галактика………………………………………………………...93 18.

Жизнь и разум во вселенной ………………………………………...105 19.

Приложения:

Важные величины в астрономии…………………………………….110 21.

Греческий алфавит……………………………………………………111 22.

Название некоторых звезд…………………………………………....111 23.

Характеристики атмосфер планет земной группы………………….112 24.

Наиболее яркие звезды на территориив России……………...……112 25.

Даты важнейших астрономических наблюдений и 26.

открытий ………………………………………………………………114 Важнейшее событие в космонавтике

Указания к наблюдениям……………………………………………..120 28.

§1.ПРЕДМЕТ АСТРОНОМИИ

–  –  –

Астрономия является одной из древнейших наук, истоки которой относятся к каменному веку (VI-III тысячелетия до н. э.) Астрономия1 изучает движение, строение, происхождение и развитие небесных тел и их систем.

Человека всегда интересовал вопрос о том, как устроен окружающий мир и какое место он в нем занимает. У большинства народов еще на заре цивилизации были сложены особые – космологические мифы, повествующие о том, как из первоначального хаоса постепенно возникает космос (порядок), появляется все, что окружает человека: небо и земля, горы, моря и реки, растения и животные, а также сам человек. На протяжении тысячелетий шло постепенное накопление сведений о явлениях, которые происходили на небе.

Оказалось, что периодическим изменениям в земной природе сопутствуют изменения вида звездного неба и видимого движения Солнца.

посев, полив, уборку урожая. Но это можно было сделать лишь при использовании календаря, составленного по многолетним наблюдениям положения и движения Солнца и Луны. Так необходимость регулярных наблюдений за небесными светилами была обусловлена практическими потребностями счета времени. Строгая периодичность, свойственная движению небесных светил, лежит в основе основных единиц счета времени, которые используются до сих пор, - сутки, месяц, год.

Простое созерцание происходящих явлений и их наивное толкование постепенно сменялись попытками научного объяснения причин наблюдаемых явлений. Когда в Древней Греции (VI в. до н. э.) началось бурное развитие философии как науки о природе, астрономические знания стали неотъемлемой частью человеческой культуры. Астрономия – единственная наука, которая получила свою музу-покровительницу – Уранию.

С самых древних времен развитие астрономии и математики было тесно связано между собой. Вы знаете, что в переводе с греческого название одного из разделов математики – геометрии – означает «землемерие».

1 Это слово происходит от двух греческих слов: astron – звезда, светило и nomos – закон).

Первые измерения радиуса земного шара были произведены еще в III в. до н. э. на основе астрономических наблюдений за высотой Солнца в полдень. Необычное, но ставшее привычным деление окружности на 360 имеет астрономическое происхождение: оно возникло тогда, когда считалось, что продолжительность года равна 360 суткам, а Солнце в своем движении вокруг Земли каждые сутки делает один шаг - градус.

Астрономические наблюдения издавна позволяли людям ориентироваться в незнакомой местности и на море. Развитие астрономических методов определения координат в XV - XVII вв. в немалой степени было обусловлено развитием мореплавания и поисками новых торговых путей. Составление географических карт, уточнение формы и размеров Земли на долгое время стало одной из главных задач, которые решала практическая астрономия. Искусство прокладывать путь по наблюдениям за небесными светилами, получившее название навигация, используется теперь не только в мореходном деле и авиации, но и в космонавтике.

Астрономические наблюдения за движением небесных тел и необходимость заранее вычислять их расположение сыграли важную роль в развитии не только математики, но и очень важного для практической деятельности человека раздела физики – механики. Выросшие из единой когда-то науки о природе – философии – астрономия, математика и физика никогда не теряли тесной связи между собой. Взаимосвязь этих наук нашла непосредственное отражение в деятельности многих ученых.

Далеко не случайно, например, что Галилео Галилей и Исаак Ньютон известны своими работами и по физике, и по астрономии. К тому же Ньютон является одним из создателей дифференциального и интегрального исчислений. Сформулированный им же в конце XVII в.

Закон всемирного тяготения открыл возможность применения этих математических методов для изучения движения планет и других тел Солнечной системы. Постоянное совершенствование способов расчета на протяжении XVIII в. Вывело эту часть астрономии – небесную механику – на первый план среди других наук этой эпохи.

Вопрос о положении Земли во Вселенной, о том, неподвижна она или движется вокруг Солнца, в XVI-XVII вв. приобрел важное значение как для астрономии, так и для миропонимания. Гелиоцентрическое учение Николая Коперника явилось не только важным шагом в решении этой научной проблемы, но и способствовало изменению стиля научного мышления открыв новый путь к пониманию происходящих явлений.

–  –  –

Вы уже знаете, что наша Земля со своим спутником Луной, другие планеты и их спутники, кометы и малые планеты и их спутники, кометы и малые планеты обращаются вокруг Солнца, что все эти тела составляют Солнечную систему. В свою очередь, Солнце и все другие звезды, видимые на небе, входят в огромную звездную систему – нашу Галактику. Самая близкая к Солнечной системе звезда находится так далеко, что свет, который распространяется со скоростью 300 000км/с, идет от нее до Земли более четырех лет. Звезды являются наиболее распространенным типом небесных тел, в одной только нашей Галактике их насчитывается несколько сотен миллиардов. Объем, занимаемый этой звездной системой, так велик что свет может пересечь его только за 100 тыс. лет.

Во вселенной существует множество других галактик, подобных нашей. Именно расположение и движение галактик определяет строение и структуру Вселенной в целом. Галактики так далеко друг от друга, что невооруженным глазом можно видеть лишь три ближайшие: две – в Южном полушарии, а с территории России всего одну – туманность Андромеды. От наиболее удаленных галактик свет доходит до Земли за 10 млрд. лет. Значительная часть вещества звезд и галактик находится в таких условиях, создать которые в земных лабораториях невозможно. Все космическое пространство заполнено электромагнитным излучением, гравитационными и магнитными полями, между звездами в галактиках и между галактиками находится очень разреженное вещество в виде газа, пыли, отдельных молекул, атомов и ионов, атомных ядер и элементарных частиц.

Как известно, расстояние до ближайшего к Земле небесного тела – Луны составляет примерно 400 000 км. Наиболее удаленные объекты располагаются от нас на расстоянии, которое превышает расстояние до Луны более чем в 10 16 раз.

§ 2. НАБЛЮДЕНИЯ – ОСНОВА АСТРОНОМИИ

–  –  –

Огромные пространственно-временные масштабы изучаемых объектов и явлений определяют отличительные особенности астрономии.

Сведения о том, что происходит за пределами Земли в космическом пространстве, ученые получают главным образом на основе приходящего от этих объектов света и других видов излучения. Наблюдения – основной источник информации в астрономии. Эта первая особенность астрономии отличает ее от других естественных наук (например, физики или химии), где значительную роль играют опыты, эксперименты. Возможности проведения экспериментов за пределами Земли появились лишь благодаря космонавтике. Но и в этих случаях речь идет о проведении экспериментальных исследований небольшого масштаба, таких, например, как изучение химического состава лунных или марсианских пород. Трудно представить себе эксперименты над планетой в целом, звездой или галактикой.

Вторая особенность объясняется значительной продолжительностью целого ряда изучаемых в астрономии явлений (от сотен до миллионов и миллиардов лет). Поэтому непосредственно наблюдать происходящие изменения невозможно. Когда изменения происходят особенно медленно, приходится проводить наблюдения многих родственных между собой объектов, например звезд. Основные сведения об эволюции звезд именно таким способом.

Третья особенность астрономии обусловлена необходимостью указать положение небесных тел в пространстве (их координаты) и невозможностью различить, какое из них находится ближе, а какое дальше от нас. На первый взгляд все наблюдаемые светила кажутся нам одинаково далекими.

Люди в древности считали, что все звезды располагаются на небесной сфере, которая как единое целое вращается вокруг Земли. Уже более 2000 лет тому назад астрономы стали применять способы, которые позволяли указать расположения любого светила на небесной сфере по отношению к другим космическим объектам или наземным ориентирам.

Представлением о небесной сфере удобно пользоваться и теперь, хотя мы знаем, что этой сферы реально не существует.

Рис. 1. Небесная сфера Рис. 2. Оценка угловых расстояний на небе Построим небесную сферу и проведем ее из центра луч по направлению к звезде А (рис. 1.). Там где этот луч пересечет поверхность сферы, поместим точку А, изображающую эту звезду. Звезда В будет изображаться точкой В. Повторив подобную операцию для всех наблюдаемых звезд, мы получим на поверхности сферы изображение звездного неба – звездный глобус. Ясно, что если наблюдатель находится в центре этой воображаемой сферы, то для него направление на сами звезды и на их изображения на сфере будут совпадать. Расстояния между звездами на небесной сфере можно выражать только в угловой мере. Эти угловые расстояния измеряются величиной центрального угла между лучами, направленными на одну и другую звезду, или соответствующими им дугами на поверхности сферы.

Для приближенной оценки угловых расстояний на небе полезно запомнить такие данные: угловое расстояние между двумя крайними звездами ковша Большой Медведицы (а и) составляет около 5 (рис.2.), а от а большой Медведицы (Полярной звезды) – в 5 раз больше – примерно

25. Простейшие глазомерные оценки угловых расстояний можно провести также с помощью пальцев вытянутой руки.

Только два светила - Солнце и Луну - мы видим как диски. Угловые диаметры этих дисков почти одинаковы-около 30", или 0,5. Угловые размеры планет и звезд значительно меньше, поэтому мы их видим просто как светящиеся точки. Для невооруженного глаза объект не выглядит точкой в том случае, если угловое размеры превышают 2-3". Это означает, в частности, что наш различает каждую по отдельности светящуюся точку (звезду) в том случае, если угловое расстояние между ними больше этой величины. Иначе говоря, мы видим объект не точечным лишь в том случае, если расстояние до него превышает его размеры не более чем в 1700 раз.

О том, как на основании угловых измерений определяют расстояния до небесных тел и их линейные размеры, будет рассказано далее.

Чтобы отыскать на небе светило, надо указать, в какой стороне горизонта и как высоко над ним оно находится. С этой целью используется система горизонтальных координат - азимут и высота. Для наблюдателя, находящегося в любой точке Земли, нетрудно определить вертикальное и горизонтальное направления. Первое из них определяется с помощью отвеса и изображается на чертеже (рис. 3.) отвесной линией ZZ", проходящей через центр сферы (точку O). Точка Z расположенная прямо над головой наблюдателя, называется зенитом. Плоскать, которая проходит через центр сферы перпендикулярно отвесной линии, образует при пересечении со сферой окружность- истинный, или математический, горизонт. Высота светила отсчитывается по окружности, проходящей через зенит и светило М, и выражается длиной дугой этой окружности от горизонта до светила. Эту дугу и соответствующий ей угол принято обозначать буквой h. Высота светила, которое находится в зените, равна 90, на горизонте- 0. Положение светила относительно сторон горизонта указывает его вторая координата- азимут, обозначаемый буквой А. Азимут отсчитывается от точки юга в направлении движения часовой стрелки, так что азимут точки юга равен 0, точки запада - 90 и т.д.

–  –  –

Горизонтальное координаты указывают положение светила на небе в данный момент и вследствие вращения Земли непрерывно меняются. На практике, например в геодезии, высоту и азимут измеряют специальными угломерными оптическими приборами-теодолитами.

–  –  –

Основным прибором, который используется в астрономии для наблюдения небесных тел, приема и анализа приходящего от них излучения, является телескоп. Слово это происходит от двух греческих слов: tele-далеко и skopeo –смотрю.

Телескоп применяют, во-первых, для того, чтобы собрать как можно больше света, идущего от исследуемого объекта, а во-вторых, чтобы обеспечит возможность изучать его мелкие детали, недоступные невооруженному глазу. Чем более слабые объекты дает возможность увидеть телескоп, тем больше его проницающая сила. Возможность различать мелкие детали характеризует разрешающую способность телескопа. Обе эти характеристики телескопа зависят от диаметра его объектива.

Количество света, собираемого объективом, возрастает пропорционально его площади (квадрату диаметра) (рис.4). Диаметр зрачка человеческого глаза даже в полной темноте не превышает 8 мм.

Объектов телескопа может превышать по диаметру зрачок глаза в десятки и сотни раз. Это позволяет с помощью телескопа обнаружить звезды и другие объекты, которые в 100 млн раз слабее объектов, видимых невооруженным глазом.

Рис. 4. Cобирание света объективом телескопа

Чем меньше размер изображения светящейся точки (звезды), которое дает объектив телескопа, тем лучше его разрешающая способность.

Если расстояние между изображениями двух звезд меньше размера самого изображения, то они сливаются в одно. Минимальный размер изображения звезды (в секундах дуги) можно рассчитать по формуле:

где - длина на световой волны, а D - диаметр объектива. У школьного телескопа, диаметр объектива которого составляет 60мм, теоретическая разрешающая способность будет равна примерно 2".

Напомним, что это перевешает разрешающую способность невооруженного глаза (2") в 60 раз. Реальная разрешающая способность телескопа будет меньше, поскольку на качество изображения существенно влияет состояние атмосферы, движение воздуха.

Если в качестве объектива телескопа используется линза, то он называется рефрактор (от латинского слова refracto-преломляю), а если вогнутое зеркало, то рефлектор (reflecto-отражаю).

Помимо рефракторов и рефлекторов в настоящее время используется различные типы зеркально-линзовых телескопов, один из которых – менисковый – представлен на рисунке 5.

–  –  –

Школьные телескопы по большой части является рефракторами, их объективом, как правило, служит двояковыпуклая собирающая линза. Как известно, если предмет находится дальше двойного фокусного расстояния.

Она дает уменьшенное, перевернутое и действительное его изображение.

Это изображение располагается между точками фокуса и двойного фокуса линзы. Расстояния до Луны, планет, а тем более звезд так велики, что лучи, приходящие от них, можно считать параллельными. Следовательно, изображение объекта будет располагаться в фокальной плоскости.

Построим изображение Луны, которое дает объектив 1 с фокусным расстоянием F (рис. 6).

Рис. 6. Построение изображения в телескопе

Из рисунка видно, что угловых размеров наблюдаемого объекта –угол а-объектив не изменяет. Воспользуемся теперь еще одной линзой- окуляром 2, поместив ее от изображения Луны (точка F1) на расстоянии, равном фокусному расстоянию этой линзы-f, в точку F2. Фокусное расстояние окуляра должно быть меньше, чем фокусное расстояние объектива. Построив изображение, которое дает окуляр, мы убедимся, что он увеличивает угловые размеры Луны: заметно больше угла а.

Увеличение, которое дает телескоп, равно отношению фокусного расстояния объектива к фокусному расстоянию окуляр:

Телескоп увеличивает видимые угловые размеры Солнца, Луны, планет и деталей на них, но звезды из-за их колоссальной удаленности все равно видны в телескоп, как светящиеся точки.

1. В чем состоят особенности астрономии? 2. Какие координаты светил называются горизонтальными? 3. Опишите, как координаты Солнца будут меняться в процессе его движения над горизонтом в течение суток.

4. По своему линейному размеру диаметр Солнца больше диаметра Луны примерно в 400 раз. Почему их угловые диаметры почти равны? 5. Для чего используется телескоп? 6. Что считается главной характеристикой телескопа?

§ 3. ЗВЕЗДЫ И СОЗВЕЗДИЯ Вероятно, еще на заре цивилизации люди, стремясь как-то разобраться во множестве звезд и запомнить их расположение, мысленно объединяли их в определенные фигуры. Вспомните, как часто мы находим в контурах облаков, гор или деревьев очертания людей, животных или даже фантастических существ. Многие характерные «звездные фигуры»

уже в глубокой древности получили имена героев греческих мифов и легенд, а также тех мифических существ, с которыми эти герои сражались.

Так появились на небе Геркулес, Персей, Орион, Андромеда и т. д., а также Дракон, Телец, Кит и т. п. Некоторые из этих созвездий упоминаются в древнегреческих поэмах «Илиада» и «Одиссея». Их изображения можно видеть в старинных звездных атласах, на глобусах и картах звездного неба (рис. 7.).

Рис. 7. Звездное небо на старинных картах

В наши дни созвездиями называют определенные участки звездного неба, разделенные между собой строго установленными границами.

Среди всех 88 созвездий известное каждому Большая Медведица - одно из самых крупных.

Видимые на небе невооруженным глазом звезды астрономы еще до нашей эры разделили на шесть величин. Самые яркие (их на небе менее 20) стали считать звездами первой величины. Чем слабее звезда, тем больше число, обозначающее ее звездную величину. Наиболее слабые, едва различимые невооруженным глазом - это звезды шестой величины. В каждом созвездии звезды обозначаются буквами греческого алфавита (приложение II), как правило, в порядке убывания их яркости. Наиболее яркая в этом созвездии звезда обозначается буквой а, вторая по яркости - и т. д. Кроме того, примерно 300 звезд получили собственные имена арабского и греческого происхождения. Это либо самые яркие звезды, либо наиболее интересные объекты из числа более слабых звезд. Так, например, средняя звезда в ручке ковша Большой Медведицы называется Мицар, что по-арабски означает «конь». Эта звезда второй величины обозначается, Большой Медведицы. Рядом с Мицаром можно видеть более слабую звездочку четвертой величины, которую назвали Алькор - «всадник». По этой звезде проверяли качество зрения у арабских воинов несколько веков тому назад.

Как отыскать на небе Полярную звезду - а Малой Медведицы, напоминает рисунок 8.

Рис.8. Способ отыскания Полярной звезды.

В этом созвездии, которое нередко называют «Малый Ковш», она является самой яркой. Но так же, как и большинство звезд ковша Большой Медведицы, Полярная - звезда второй величины.

Когда ученые стали располагать приборами для измерения величины потока света, приходящего от звезд, оказалось, что от звезды первой величины света приходит в 2,5 раза больше, чем от звезды второй величины, от звезды второй величины в 2,5 раза больше, чем от звезды третьей величины, и т. д. Несколько звезд были отнесены к звездам нулевой величины, потому что от них света приходит в 2,5 раза больше, чем от звезд первой величины. А самая яркая звезда всего неба - Сириус (а Большого Пса) получила даже отрицательную звездную величину -1,5.

Список наиболее ярких звезд с указанием их названия и звездной величины приведен в приложении V.

Измерения светового потока от звезд позволяют теперь определить их звездные величины с точностью до десятых и сотых долей.

Было установлено, что поток энергии от звезды первой величины в 100 раз больше, чем от звезды шестой величины. К настоящему времени звездные величины определены для многих сотен тысяч звезд.

С изобретением телескопа ученые получили возможность увидеть более слабые звезды, от которых приходит света гораздо меньше, чем от звезд шестой величины. Шкала звездных величин все дальше и дальше уходит в сторону их возрастания по мере того, как увеличиваются возможности телескопов. Так, например, хаббловский космический телескоп позволил получить изображение предельно слабых объектов - до тридцатой звездной величины.

1. Что называется созвездием? 2. Перечислите известные вам созвездия. 3. Как обозначается звезд созвездиях? 4.Звездная величина Веги равна 0,14, а звездная величина Денеба составляет 1,33.Какая из этих звезд ярче? 5. Какая из звезд, помешенных в приложении V, является самой слабой? 6. Как вы думаете, почему на фотографии, полученной с помощью телескопа, видны более слабые звезды, чем те, которые можно увидеть, глядя непосредственно в тот же телескоп?

§ 4. ДВИЖЕНИЕ И ФАЗЫ ЛУНЫ

–  –  –

День ото дня серп Луны увеличивается по ширине, и его угловое расстояние от Солнца возрастает. Через неделю после новолуния мы видим половину освещенного полушария Луны - наступает фаза, называемая первой четвертью (рис. 9, положение 3).

В дальнейшем доля освещенного полушария Луны, видимая с Земли, продолжает увеличиваться до тех пор, пока не наступит полнолуние (положение 5). В этой фазе Луна находится на небе в стороне, противоположной Солнцу, и видна над горизонтом всю ночь - от его захода до восхода. После полнолуния фаза Луны начинает уменьшаться.

Сокращается и ее угловое расстояние от Солнца. Сначала на правом крае лунного диска появляется небольшой ущерб, который имеет форму серпа.

Постепенно этот ущерб растет (положение 6), а через неделю после полнолуния наступает фаза последней четверти (положение 7). В этой фазе, как и в первой четверти, мы снова видим половину освещенного полушария Луны, но теперь уже другую, которая в первой четверти была неосвещенной. Луна восходит поздно и видна в этой фазе по утрам (рис.11.).

–  –  –

В последующем ее серп, обращенный теперь выпуклостью влево, становится все более и более узким (рис. 9, положение 8), постепенно сближаясь с Солнцем. В конце концов он скрывается в лучах восходящего Солнца - снова наступает новолуние.

Полный цикл смены лунных фаз составляет 29,5 суток. Этот промежуток времени между двумя последовательными одинаковыми фазами называется синодическим месяцем (от греч. synodos - соединение). Еще в глубокой древности у многих народов месяц, наряду с сутками и годом, стал одной из основных календарных единиц.

Понять, почему синодический месяц длиннее сидерического, нетрудно, если вспомнить, что Земля движется вокруг Солнца. На рисунке 12 взаимное расположение Земли Т и Луны L соответствует новолунию. Через 27,3 суток Луна займет на небе прежнее положение относительно звезд и будет находиться в точке L1. За это время Земля, перемещаясь на 1° в сутки, пройдет по орбите дугу в 27° и окажется в точке Т1. Луне, для того чтобы снова оказаться в новолунии L2, придется пройти по орбите такую же дугу (27°). На это потребуется немногим более двух суток, поскольку за сутки Луна смещается на 13°.

С Земли видна лишь одна сторона Луны, однако это не означает, что она не вращается вокруг своей оси. Проведем опыт с глобусом Луны, перемещая его вокруг глобуса Земли так, чтобы к нему всегда была обращена одна сторона лунного глобуса. Этого можно достичь лишь в том случае, если мы будем его поворачивать по отношению ко всем другим предметам, находящимся в классе.

Полный оборот глобуса Луны вокруг оси завершится одновременно с тем, как завершится

–  –  –

1. В каких пределах изменяется угловое расстояние Луны от Солнца?

2. Как по фазе Луны определить ее примерное угловое расстояние от Солнца? 3. На какую примерно величину меняется прямое восхождение Луны за неделю? 4. Какие наблюдения необходимо провести, чтобы заметить движение Луны вокруг Земли? 5. Какие наблюдения доказывают, что на Луне происходит смена дня и ночи? 6. Почему пепельный свет Луны слабее, чем свечение остальной части Луны, видимой вскоре после новолуния?

§ 5. ЗАТМЕНИЯ СОЛНЦА И ЛУНЫ Если бы плоскость орбиты, по которой Луна движется вокруг Земли, совпадала с плоскостью орбиты, по которой Земля обращается вокруг Солнца, то ежемесячно в момент новолуния происходило бы солнечное затмение, а в момент полнолуния - лунное. Этого не случается потому, что плоскость лунной орбиты наклонена к плоскости орбиты Земли под углом около 5°.

Именно поэтому, как показано на переднем плане рисунка 13, тень Луны в новолуние может пройти выше Земли, а в полнолуние сама Луна может прейти ниже земной тени. В это время положение орбиты Луны таково, что она пересекает плоскость орбиты Земли в фазах первой и последней четверти. В каких же случаях затмения Солнца и Луны могут произойти?

Рис. 13. Периодичность затмений Солнца и Луны

Вы уже знаете, что направление оси вращения Земли в пространстве остается при движении нашей планеты вокруг Солнца неизменным.

Практически не меняется в течение года и положение плоскости лунной орбиты.

Рассмотрим, как это повлияет на возможность наступления затмений. За три месяца Земля пройдет четверть своего пути вокруг Солнца и займет положение, показанное в правой части рисунка 13. Теперь плоскость лунной орбиты будет расположена так, что линия ее пересечения с плоскостью земной орбиты направлена на Солнце. Поэтому Луна будет пересекать плоскость орбиты Земли (или находиться близ нее) в новолуние и полнолуние. Иначе говоря, двигаясь по небу, Луна приходит в ту точку эклиптики, где в этот момент находится Солнце, и загораживает его от нас. В том случае, если Солнце целиком закрыто Луной, затмение называется полным. Если же случится так, что она закроет лишь часть Солнца, то затмение будет частным. Когда Луна пересекает эклиптику в точке, диаметрально противоположной Солнцу, она сама полностью или частично скрывается в тени Земли. Лунные затмения, как и солнечные, могут быть полными или частными.

Условия, благоприятные для наступления затмений, сохраняются примерно на протяжении месяца. За это время может произойти по крайней мере одно солнечное затмение или два солнечных и одно лунное.

Следующее необходимое для наступления затмений расположение лунной орбиты повторится снова лишь спустя примерно полгода (177- 178 суток), когда Земля пройдет половину своего пути вокруг Солнца. В течение года на Земле обычно происходит два-три солнечных затмения и одно-два лунных. Максимальное число затмений за год - семь.

Лунные затмения, хотя и происходят реже солнечных, но видны чаще.

Луна, попавшая при затмении в земную тень, видна на всем полушарии Земли, где она в это время находится над горизонтом. Погружаясь в земную тень, Луна приобретает красноватую окраску различных оттенков.

Цвет зависит от состояния земной атмосферы, которая, преломляя лучи Солнца и рассеивая их, все же пропускает красные лучи внутрь конуса тени. Несколько часов затрачивает Луна, чтобы пересечь тень Земли.

Полная фаза затмения длится около полутора часов.

Полное затмение Солнца можно наблюдать лишь там, где на Землю падает небольшое по размерам (диаметром не более 270 км) пятно лунной тени. Тень Луны со скоростью примерно 1 км/с движется по земной поверхности с запада на восток, поэтому в каждом пункте Земли полное затмение продолжается лишь несколько минут (на экваторе максимальная продолжительность составляет 7 мин 40 с). Путь, который проходит тень Луны, называется полосой полного солнечного затмения (рис. 14.).

В разные годы лунная тень пробегает по различным районам земного шара, поэтому полные солнечные затмения видны реже лунных. Так, например, в окрестностях Москвы в последний раз затмение было 19 августа 1887 г., а в следующий раз произойдет только 16 сентября 2126 г.

Полутень Луны имеет диаметр значительно больше тени - около 6000 км.

Там, куда попала полутень Луны, происходит частное затмение Солнца.

Их можно видеть каждые два-три года.

Через каждые 6585,3 суток (18 лет 11 суток 8 часов) затмения повторяются в прежнем порядке. Таков промежуток времени, в течение которого плоскость лунной орбиты делает полный оборот в пространстве.

Знание закономерностей движения Луны и Земли позволяет ученым с высокой степенью точности на сотни лет вперед вычислять моменты наступления затмений и знать, где на земном шаре они будут видны.

Сведения о затмениях на ближайший год и условия их видимости содержатся, в частности, в «Школьном астрономическом календаре».

Располагая необходимыми данными о предстоящих затмениях, ученые получают возможность организовать экспедиции в полосу полного солнечного затмения. В момент полной фазы можно наблюдать внешние, наиболее разреженные слои атмосферы Солнца - солнечную корону, которая в обычных условиях не видна. В прошлом многие важные сведения о природе Солнца были получены именно во время полных затмений.

1. Почему затмения Луны и Солнца не происходят каждый месяц?

2. Каков минимальный промежуток времени между солнечным и лунным затмениями? 3. Можно ли с обратной Луны видеть полное солнечное затмение? 4. Какое явление будут наблюдать находящиеся на Луне космонавты, когда с Земли видно лунное затмение?

§ 6.СТРОЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ

Солнечная система - это прежде всего Солнце и девять - больших планет, к числу которых относится и Земля.

Кроме больших планет со спутниками, вокруг Солнца обращаются малые планеты (астероиды), которых в настоящее время известно более 6000, и еще большее число комет. Диаметр самых крупных астероидов не превышает 1000 км, а ядра комет еще меньше. Вокруг Солнца движутся также тела размером в десятки и сотни метров, глыбы и камни, множество мелких камешков и пылинок. Чем меньше размеры этих частиц, тем их больше. Межпланетная среда - это крайне разреженный газ, состояние которого определяется излучением Солнца и растекающимися от него потоками вещества. Движением всех больших и малых тел Солнечной системы управляет Солнце, масса которого в 333 000 раз превышает массу Земли и в 750 раз суммарную массу всех планет.

–  –  –

Путь к пониманию положения нашей планеты и живущего на ней человечества во Вселенной был очень непростым и подчас весьма драматичным. В древности было естественным считать, что Земля является неподвижной, плоской и находится в центре мира. Казалось, что вообще весь мир создан ради человека. Подобные представления получили название антропоцентризма (от греч. antropos - человек).

Многие идеи и мысли, которые в дальнейшем отразились в современных научных представлениях о природе, в частности в астрономии, зародились в Древней Греции, еще за несколько веков до нашей эры. Трудно перечислить имена всех мыслителей и их гениальные догадки. Выдающийся математик Пифагор (VI в. до н. э.) был убежден, что «в мире правит число». Считается, что именно Пифагор первым высказал мысль о том, что Земля, как и все другие небесные тела, имеет шарообразную форму и находится во Вселенной без всякой опоры.

Другой не менее известный ученый древности, Демокрит - основоположник представлений об атомах, живший за 400 лет до нашей эры, - считал, что Солнце во много раз больше Земли, что Луна сама не светится, а лишь отражает солнечный свет, а Млечный Путь состоит из огромного количества звезд.

Обобщить все знания, которые были накоплены к IV в. до н. э., смог выдающийся философ античного мира Аристотель (384-322 до н. э.). Его деятельность охватывала все естественные науки - сведения о небе и Земле, о закономерностях движения тел, о животных и растениях и т. д.

Главной заслугой Аристотеля как ученого-энциклопедиста было создание единой системы научных знаний.

На протяжении почти двух тысячелетий его мнение по многим вопросам не подвергалось сомнению.

Согласно Аристотелю, все тяжелое стремится к центру Вселенной, где скапливается и образует шарообразную массу - Землю. Планеты размещены на особых сферах, которые вращаются вокруг Земли. Такая система мира получила название геоцентрической (от греческого названия Земли-Гея). Аристотель не случайно предложил считать Землю неподвижным центром мира. Если бы Земля перемещалась, то, по справедливому мнению Аристотеля, было бы заметно регулярное изменение взаимного расположения звезд на небесной сфере. Но ничего подобного никто из астрономов не наблюдал. Только в начале XIX в. было наконец-то обнаружено и измерено смещение звезд (параллакс), происходящее вследствие движения Земли вокруг Солнца.

Многие обобщения Аристотеля были основаны на таких умозаключениях, которые в то время не могли быть проверены опытом.

Так, он утверждал, что движение тела не может происходить, если на него не действует сила. Как вы знаете из курса физики, эти представления были опровергнуты только в XVII в. во времена Галилея и Ньютона.

Среди ученых древности выделяется смелостью своих догадок Аристарх Самосский, живший в III в. до н. э. Он первым определил расстояние до Луны, вычислил размеры Солнца, которое, по его данным, оказалось в 300 с лишним раз больше Земли по объему. Вероятно, эти данные стали одним из оснований для вывода о том, что Земля вместе с другими планетами движется вокруг этого самого крупного тела. В наши дни Аристарха Самосского стали называть «Коперником античного мира».

–  –  –

К сожалению, труды этого замечательного ученого до нас практически не дошли, и более полутора тысяч лет человечество было уверено, что Земля - это неподвижный центр мира. В немалой степени этому способствовало математическое описание видимого движения светил, которое разработал для геоцентрической системы мира один из выдающихся математиков древности - Клавдий Птолемей во II в. н. э.

Наиболее сложной задачей оказалось объяснение петлеобразного движения планет (рис. 15.).

Птоломей в своем знаменитом сочинении «Математический трактат по астрономии» (оно более известно как «Альмагест») утверждал, что каждая планета равномерно движется по эпициклу- малому кругу, центр которого движется вокруг Земли по деференту - большому кругу (рис.

16). Тем самым ему удалось объяснить особый характер движения планет, которым они отличались от Солнца и Луны. Система Птолемея давала чисто кинематическое описание движения планет - иного наука того времени предложить не могла.

2. Гелиоцентрическая система мира

Вы уже убедились, что использование модели небесной сферы при описании движения Солнца, Луны и звезд позволяет вести многие полезные для практических целей расчеты, хотя реально такой сферы не существует. То же справедливо и в отношении эпициклов и деферентов, на основе которых можно с определенной степенью точности рассчитывать положение планет. Однако с течением времени требования к точности этих расчетов постоянно возрастали, приходилось добавлять все новые и новые эпициклы для каждой планеты. Все это усложняло систему Птолемея, делая ее излишне громоздкой и неудобной для практических расчетов. Тем не менее геоцентрическая система оставалась незыблемой еще около 1000 лет.

Ведь после расцвета античной культуры в Европе наступил длительный период, в течение которого не было сделано ни одного существенного открытия в астрономии и многих других науках.

Только в эпоху Возрождения начинается подъем в развитии наук, в котором астрономия становится одним из лидеров. В 1543 г. была издана книга выдающегося польского ученого Николая Коперника (1473-1543), в которой он обосновал новую - гелиоцентрическую - систему мира. Коперник Николай Коперник показал, что суточное движение всех светил можно объяснить вращением Земли вокруг оси, а петлеобразное движение планет - тем, что все они, включая Землю, обращаются вокруг Солнца.

Создание гелиоцентрической системы ознаменовало новый этап в развитии не только астрономии, но и всего естествознания. Особо важную роль сыграла идея Коперника о том, что за видимой картиной происходящих явлений, которая кажется нам истинной, надо искать и находить недоступную для непосредственного наблюдения сущность этих явлений. Гелиоцентрическая система мира, обоснованная, но не доказанная Коперником, получила свое таких выдающихся ученых, как Галилео Галилей и Иоганн Кеплер Галилей (1564-1642), одним из первых направивший телескоп на небо, истолковал сделанные при этом открытия как доводы в пользу теории Коперника. Открыв смену фаз Венеры, он пришел к выводу, что такая их последовательность может наблюдаться только в случае ее обращения вокруг Солнца. Обнаруженные им четыре спутника планеты Юпитер также опровергали представления о том, что Земля является единственным в мире центром, вокруг которого может происходить вращение других тел. Галилей не только увидел горы на Луне, но даже измерил их высоту. Наряду с несколькими другими учеными он также наблюдал пятна на Солнце и заметил их перемещение по Галилео Галилей солнечному диску.

На этом основании он заключил, что Солнце вращается и, следовательно, имеет такое движение, которое Коперник приписывал нашей планете. Так был сделан вывод о том, что Солнце и Луна имеют определенное сходство с Землей. Наконец, наблюдая в Млечном Пути и вне его множество слабых звезд, недоступных невооруженному глазу, Галилей сделал вывод о том, что расстояния до звезд различны и никакой «сферы неподвижных звезд» не существует. Все эти открытия стали новым этапом в осознании положения Земли во Веселенной.

1. В чем отличие системы Коперника от системы Птоломея? 2.Какие выводы в пользу гелиоцентрической системы Коперника следовали из открытий, сделанных с помощью телескопа?

§ 7.ЗАКОНЫ ДВИЖЕНИЯ ПЛАНЕТ СОЛНЕЧНОЙ СИСТЕМЫ

Важную роль в формировании представлений о строении Солнечной системы сыграли также законы движения планет, которые были открыты Иоганном Кеплером (1571-1630) и стали первыми естественнонаучными законами в их современном понимании. Работы Кеплера создали возможность для обобщения знаний по механике той эпохи в виде законов динамики и закона всемирного тяготения, сформулированных позднее Исааком Ньютоном. Многие ученые вплоть до начала XVII в. считали, что движение небесных тел должно быть равномерным и происходить по «самой совершенной» кривой- окружности. Лишь Кеплеру удалось преодолеть этот предрассудок и установить действительную форму планетных орбит, а также закономерность изменения скорости движения планет при их обращении вокруг Солнца.

В своих поисках Кеплер исходил из убеждения, что «в мире правит число», высказанного еще Пифагором.

Он искал соотношения между различными величинами, характеризующими движение планет, - размеры орбит, период обращения, скорость. Кеплер действовал фактически вслепую, чисто эмпирически.

Он пытался сопоставить характеристики движения планет с закономерностями музыкальной гаммы, длиной сторон описанных и вписанных в орбиты планет многоугольников и т.д. Кеплеру необходимо было Иоганн Кеплер построить орбиты планет, перейти от экваториальной системы координат, указывающих положение планеты на небесной сфере, к системе координат, указывающих ее положение в плоскости орбиты. Он воспользовался при этом собственными наблюдениями планеты Марс, а также многолетними определениями координат и конфигураций этой планеты, проведенными его учителем Тихо Браге.

Рис. 17. Построение орбиты Марса Кеплером

Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. Для того чтобы построить орбиту Марса, он применил способ, который показан на рисунке 17.

Пусть нам известно угловое расстояние Марса от точки весеннего равноденствия во время одного из противостояний планеты - его прямое восхождение которое выражается углом где - положение Земли на орбите в этот момент, а М1 - положение Марса.

Очевидно, что спустя 687 суток (таков звездный период обращения Марса) планета придет в ту же точку своей орбиты. Если определить прямое восхождение Марса на эту дату, то, как видно из рисунка 17, можно указать положение планеты в пространстве, точнее, в плоскости ее орбиты. Земля в этот момент находится в точке, и, следовательно, угол есть не что иное, как прямое восхождение Марса - а2. Повторив подобные операции для нескольких других противостояний Марса, Кеплер получил еще целый ряд точек и, проведя по ним плавную кривую, построил орбиту этой планеты.

Изучив расположение полученных точек, он обнаружил, что скорость радиус-вектор планеты за равные промежутки времени описывает равные площади.

Впоследствии эта закономерность получила название второго закона Кеплера.

Этот закон, который часто называют законом площадей, иллюстрируется рисунком 18. Радиусом-вектором называют в данном случае переменный по своей величине отрезок, соединяющий Солнце и ту точку орбиты, в которой находится планета. АА1 ВВ1 и СС1 - дуги, которые проходит планета за равные промежутки времени. Площади заштрихованных фигур равны между собой.

Согласно закону сохранения энергии, полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остается неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна во всех точках орбиты и равна полной энергии.

По мере приближения планеты к Солнцу возрастает ее скорость - увеличивается кинетическая энергия, но вследствие уменьшения расстояния до Солнца уменьшается энергия потенциальная.

Установив закономерность изменения скорости движения планет, Кеплер задался целью определить, по какой кривой происходит их обращение вокруг Солнца. Он был поставлен перед необходимостью сделать выбор одного из двух возможных решений: 1) считать, что орбита Марса представляет собой окружность, и допустить, что на некоторых участках орбиты вычисленные координаты планеты расходятся с наблюдениями (из-за ошибок наблюдений) на 8"; 2) считать, что наблюдения таких ошибок не содержат, а орбита не является окружностью. Будучи уверенным в точности наблюдений Тихо Браге, Кеплер выбрал второе решение и установил, что наилучшим образом положения Марса на орбите совпадают с кривой, которая называется эллипсом, при этом Солнце не располагается в центре эллипса. В результате был сформулирован закон, который называется первым законом Кеплера.

Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Как известно, эллипсом называется кривая, у которой сумма расстояний от любой точки Р до его фокусов есть величина постоянная.

–  –  –

На рисунке 19 обозначены: О - центр эллипса; S и S1 - фокусы эллипса; АВ - его большая ось. Половина этой величины (а), которую обычно называют большой полуосью, характеризует размер орбиты планеты. Ближайшая к Солнцу точка А называется перигелий, а наиболее удаленная от него точка В - афелий. Отличие эллипса от окружности характеризуется величиной его эксцентриситета: е = OS/OA. В том случае, когда эксцентриситет равен О, фокусы и центр сливаются в одну точку - эллипс превращается в окружность.

Примечательно, что книга, в которой в 1609 г. Кеплер опубликовал первые два открытых им закона, называлась «Новая астрономия, или Физика небес, изложенная в исследованиях движения планеты Марс...».

Он продолжил поиски «гармонии» в движении всех планет, и спустя 10 лет ему удалось сформулировать третий закон Кеплера.

Квадраты звездных периодов обращения планет относятся между собой, как кубы больших полуосей их орбит.

Формула, выражающая третий закон Кеплера, такова:

где Т1 и Т2- периоды обращения двух планет; а1 и аг - большие полуоси их орбит.

Вот что писал Кеплер после открытия этого закона: «То, что 16 лет тому назад я решил искать,... наконец найдено, и это открытие превзошло все мои самые смелые ожидания...»

Действительно, третий закон заслуживает самой высокой оценки.

Ведь он позволяет вычислить относительные расстояния планет от Солнца, используя при этом уже известные периоды их обращения вокруг Солнца.

Не нужно определять расстояние от Солнца каждой из них, достаточно измерить расстояние от Солнца хотя бы одной планеты. Величина большой полуоси земной орбиты - астрономическая единица (а.е.) - стала основой для вычисления всех остальных расстояний в Солнечной системе.

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось ее орбиты?

–  –  –

1. Сформулируйте законы Кеплера. 2. Как меняется скорость планеты при ее перемещении от афелия к перигелию? 3. В какой точке орбиты планета обладает максимальной кинетической энергией? максимальной потенциальной энергией?

§ 8. ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ И РАЗМЕРОВ ТЕЛ-В СОЛНЕЧНОЙ

СИСТЕМЕ

–  –  –

Представление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.

АСТРОНОМИЧЕСКОГО ОБРАЗОВАНИЯ ЦЭиАО Посвящается 90-летию Джеральда М. Даррелла XXXIX-й Ежегодный конкурс исследовательских работ учащихся города Москвы «МЫ И БИОСФЕРА» (с участием учащихся других регионов России) МОСКВА 18 и 25 апреля 2015 года Научные руководители конкурса Дроздов Николай Николаевич, доктор биологических наук, профессор...»

«200 ЛЕТ АСТРОНОМИИ В ХАРЬКОВСКОМ УНИВЕРСИТЕТЕ Под редакцией проф. Ю. Г. Шкуратова ГЛАВА 1 ИСТОРИЯ АСТРОНОМИЧЕСКОЙ ОБСЕРВАТОРИИ И КАФЕДРЫ АСТРОНОМИИ Харьков – 2008 Книга посвящена двухсотлетнему юбилею астрономии в Харьковском университете, одном из старейших университетов Украины. Однако ее значение, на мой взгляд, выходит далеко за рамки этого события, как относящегося только к Харьковскому университету. Это юбилей и всей харьковской астрономии, и важное событие в истории всей украинской...»

«СПИСОК ИЗДАНИЙ ИЗ ФОНДОВ РГБ, ПРЕДНАЗНАЧЕННЫХ К ОЦИФРОВКЕ В ОКТЯБРЕ 2015 Г. Содержание СПИСОК ИЗДАНИЙ ИЗ ФОНДОВ РГБ, ПРЕДНАЗНАЧЕННЫХ К ОЦИФРОВКЕ В ОКТЯБРЕ 2015 Г. Общенаучное и междисциплинарное знание Ежегодник « Системные исследования» Естественные науки Физико-математические науки Математика Астрономия Химические науки Науки о Земле Серия «Открытие Земли». Биологические науки Техника. Технические науки Техника и технические нау ки (в целом) Радиоэлектроника Машиностроение Приборостроение...»

« и Поражения Рассказы дРузей, коллег, учеников и его самого МосКВА УДК 52(024) ISBN 978-5-00015-001ББК В 60д В Василий Иванович Мороз. Победы и поражения. Рассказы друзей, коллег, учеников и его самого Книга посвящена известному учёному, выдающемуся исследователю планет наземными и космическими средствами, основоположнику отечественной...»

«Гастрономический туризм: современные тенденции и перспективы Драчева Е.Л.,Христов Т.Т. В статье рассматривается современное состояние гастрономического туризма, который определяется как поездка с целью ознакомления с национальной кухней страны, особенностями приготовления, обучения и повышение уровня профессиональных знаний в области кулинарии, говорится о роли кулинарного туризма в экономике впечатлений, рассматриваются теоретические вопросы гастрономического туризма. Далее в статье...»

«АРХЕОЛОГИЯ ВОСТОЧНОЕВРОПЕЙСКОЙ СТЕПИ Жуклов А.А. К 80-ЛЕТИЮ САРАТОВСКОГО АРХЕОЛОГА И КРАЕВЕДА ЕВГЕНИЯ КОНСТАНТИНОВИЧА МАКСИМОВА Евгений Константинович Максимов родился 22 октября 1927 года в городе Вольске Саратовской области. В младшие школьные годы мечтал стать астрономом, в старших классах – кинорежиссером. Готовился даже выступить на диспуте в горкоме комсомола на тему «Кем я буду» с докладом о советских кинорежиссерах. Но после окончания школы подал документы на исторический факультет...»

«РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. С.А. ЕСЕНИНА БИБЛИОТЕКА ПРОФЕССОР АСТРОНОМИИ КУРЫШЕВ В.И. (1913 1996) Биобиблиографический указатель Составитель: заместитель директора библиотеки РГПУ Смирнова Г.Я. РЯЗАНЬ, 2002 ОТ СОСТАВИТЕЛЯ: Биобиблиографический указатель посвящен одному из замечательных педагогов и ученых Рязанского педагогического университета им. С.А. Есенина доктору технических наук, профессору Курышеву В.И. Указатель включает обзорную статью о жизни и...»

«200 ЛЕТ АСТРОНОМИИ В ХАРЬКОВСКОМ УНИВЕРСИТЕТЕ Под редакцией проф. Ю. Г. Шкуратова БИБЛИОГРАФИЯ РАБОТ ЗА 200 ЛЕТ Харьков – 2008 СОДЕРЖАНИЕ ПРЕДИСЛОВИЕ РЕДАКТОРА 1. ИСТОРИЯ АСТРОНОМИЧЕСКОЙ ОБСЕРВАТОРИИ И КАФЕДРЫ АСТРОНОМИИ.1.1. Астрономы и Астрономическая обсерватория Харьковского университета от 1808 по 1842 год. Г. В. Левицкий 1.2. Астрономы и Астрономическая обсерватория Харьковского университета от 1843 по 1879 год. Г. В. Левицкий 1.3. Кафедра астрономии. Н. Н. Евдокимов 1.4. Современный...»

«ИТОГОВЫЙ СЕМИНАР ПО ФИЗИКЕ И АСТРОНОМИИ ПО РЕЗУЛЬТАТАМ КОНКУРСА ГРАНТОВ 2006 ГОДА ДЛЯ МОЛОДЫХ УЧЕНЫХ САНКТ-ПЕТЕРБУРГА 11 декабря 2006 г. Тезисы докладов Санкт-Петербург, 2006 Итоговый семинар по физике и астрономии по результатам конкурса грантов 2006 года для молодых ученых Санкт-Петербурга 11 декабря 2006 г. Тезисы докладов Санкт-Петербург, 2006 Организаторы семинара Физико-технический институт им.А. Ф. Иоффе РАН Конкурсный центр фундаментального естествознания Рособразования...»

УГЛОВОЕ РАССТОЯНИЕ

УГЛОВОЕ РАССТОЯНИЕ , в астрономии - расстояние на небесной сфере между двумя небесными телами, измеренное по дуге большого круга, проходящего через них, с наблюдателем в центре. Например, угловое расстояние между двумя звездами Большой Медведицы, находящимися на одной линии с Полярной звездой, равно 5°.


Научно-технический энциклопедический словарь .

Смотреть что такое "УГЛОВОЕ РАССТОЯНИЕ" в других словарях:

    Длина дуги, выраженная в угловых единицах (т. е. в радианах, градусах, дуговых минутах или секундах), которая соответствует данному углу наблюдения. Например, угловое расстояние между двумя точками на небесной сфере представляет собой угол между… … Астрономический словарь

    угловое расстояние - kampinis atstumas statusas T sritis Standartizacija ir metrologija apibrėžtis Atstumas, išreikštas kampo matavimo vienetais. atitikmenys: angl. angular distance vok. Winkelentfernung, f rus. угловое расстояние, n pranc. distance angulaire, f … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    угловое расстояние - kampinis atstumas statusas T sritis fizika atitikmenys: angl. angular distance; angular separation vok. Winkelentfernung, f rus. угловое расстояние, n pranc. distance angulaire, f … Fizikos terminų žodynas

    Разрешение способность оптического прибора измерять линейное или угловое расстояние между близкими объектами, показывать раздельно близко расположенные объекты. Содержание 1 Угловое разрешение 2 Линейное разрешение 3 Общие сведения … Википедия

    У этого термина существуют и другие значения, см. Угловое. Село Угловое укр. Углове крымскотат. Acı Bolat Страна … Википедия

    угловое увеличением - 3.1 угловое увеличением (angular magnification M): Угловое увеличение М оптического прибора есть отношение угла наблюдения объекта, опирающегося на входной зрачок прибора (aприб), к углу наблюдения объекта глазом без прибора (aгл) Примечание В… … Словарь-справочник терминов нормативно-технической документации

    Угловое расстояние небесного светила или земного предмета от зенита. Обозначается г, отсчитывается вдоль круга высоты от 0 до 180°. С высотой h связано соотношением z = 90° h … Естествознание. Энциклопедический словарь

    Угловое расстояние небесного светила от зенита. Обозначается Z и отсчитывается вдоль круга высоты от 0 до 180˚. С высотой h связано соотношением Z = 90˚ h … Астрономический словарь

    Угловое расстояние небесного светила или земного предмета от зенита. Обозначается z, отсчитывается вдоль круга высоты от 0 до 180º. С высотой h связано соотношением z = 90º – h. * * * ЗЕНИТНОЕ РАССТОЯНИЕ ЗЕНИТНОЕ РАССТОЯНИЕ, угловое расстояние… … Энциклопедический словарь

    Расстояние между полюсом и данной точкой на земной поверхности. Объяснение 25000 иностранных слов, вошедших в употребление в русский язык, с означением их корней. Михельсон А.Д., 1865. ПОЛЯРНОЕ РАССТОЯНИЕ Угловое расстояние звезды от видимого… … Словарь иностранных слов русского языка

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа № 9».

Методическая разработка

по астрономии

«Видимое движение

Солнца и Луны»

Миасс – 2008

Введение

Предлагаемая методическая разработка «Видимое движение Солнца и Луны» предназначена для учителей физики и астрономии, работающим по следующим Программе и учебнику:

    Программа для общеобразовательных учреждений: Физика. Астрономия. 7 – 11 кл./ Сост. Ю.И. Дик, В.А. Коровин – М.: Дрофа, 2006.

    Учебник: Воронцов-Вельяминов Б.А. Астрономия. 11 кл.: Учеб. для общеобразоват. учреждений/Б.А. Воронцов-Вельяминов, Е.К. Страут, - М.: Дрофа, 2005.

Тема «Видимое движение Солнца и Луны» выбрана потому, что она актуальна для воспитания мировоззренческих понятий: причинно-следственные связи в природе, в понимании строения и движения тел Солнечной системы, познаваемости окружающего мира, формировании научных взглядов учащихся.

Новизна идей заключается в возможности использования информационно-коммуникативных технологий на уроках астрономии, что позволяет зрелищно представить некоторые изучаемые темы, дает возможность использовать много иллюстраций, фотографий и схем при проведении урока. Применение новых компьютерных технологий позволяет разнообразить методы и приемы, используемые учителем на уроке: объяснение нового материала, подготовка учащимися сообщений и докладов с помощью презентации, выполненной по программе Microsoft PowerPoint. Тестовые задания во время изучения и закрепления нового материала можно выполнять с помощью компьютера или распечатать на отдельных листах. Такая форма работы не только повышает интерес учащихся к предмету, но и приводит к росту качества знаний.

Национальный региональный компонент представлен в виде расчетов высоты Солнца над горизонтом, определения климатических условий, продолжительности дня и ночи для города Миасса.

Цель моей работы - создание мультимедийного сопровождения к урокам по теме «Видимое движение Солнца и Луны». Для каждого урока определены цель, оборудование, ключевые слова, план изложения нового материала, конспект урока, домашнее задание, способ контроля знаний учащихся.

Задачи:

    Развитие интереса учащихся к изучению предмета через использование дистанционных технологий в учебном процессе.

    Создание презентации к урокам в виде наглядных пособий нового поколения.

    Разработка тестовых заданий и лабораторных работ по изучаемой теме.

Конспекты уроков и презентации к ним составлены в соответствии с концепцией личностного – ориентированного обучения:

    Мотивационный этап

    Определение или обеспечение мотивационной готовности учащихся к уроку (настройка учеников на активную работу).

    Актуализация субъектного опыта (определение отношения к тому, с чем учащиеся пришли на урок)

    Актуализация опорных знаний.

    Целеполагание и планирование.

    Изучение нового материала.

    Рефлексия.

Методическая разработка включает:

    Поурочное планирование.

    Web-сайт «Видимое движение Солнца и Луны».

    Конспекты уроков.

Web-сайт и конспекты уроков составлены с учетом возрастных психолого-педагогических особенностей учащихся.

Web-сайт «Видимое движение Солнца, Луны и планет» прошел экспертизу в рамках акции «Экспертиза цифровых образовательных ресурсов» и признан цифровым образовательным ресурсом, готовым к тиражированию и широкому использованию. Организаторы акции – альманах «Вопросы информатизации образования» и журнал «Директор школы». Пособие доработано с учетом рекомендаций экспертного совета.

Сертификат о прохождении экспертизы находится в Приложении.

Поурочное планирование

Видимое движение Солнца и Луны - 3 часа

Тема урока

Оборудование

Контроль

Домашнее задание

Годовой путь Солнца по эклиптике

Компьютер

Проектор

Подвижная карта звездного неба

Модель небесной сферы

Модель Солнечной системы

Глобус Земли

Глобус Луны

Фронтальный опрос

§ 6, задание 9

Презентации «Рефракция солнечных лучей в атмосфере»

«Белые ночи»

Суточный путь Солнца

Оценка презентаций

Движение и фазы Луны

Фронтальный опрос

Конспекты уроков

Урок № 1. Годовой путь Солнца по эклиптике

Ход урока

2. Изучение нового материала с элементами повторения пройденного.

3. Работа с подвижной картой звездного неба (ПКЗН) и небесной сферой (НС).

4. Показ презентации «Мифы и легенды о зодиакальных созвездиях»

5. Закрепление изученного материала. Фронтальный опрос.

6. Домашнее задание.

7. Выставление оценок за работу на уроке

Случились вместе два Астронома в пиру

И спорили весьма между собой в жару.

Один твердил: Земля, вертясь, вкруг Солнца ходит;

Другой, что Солнце все с собой планеты водит;

Один Коперник был, другой слыл Птолемей.

Тут повар спор решил усмешкою своей.

Хозяин спрашивал: "Ты звезд теченье знаешь?

Скажи, как ты о сем сомненье рассуждаешь?"

Он дал такой ответ:"Что в том Коперник прав,

Я правду докажу, на Солнце, не бывав.

Кто видел простака из поваров такова,

Который бы вертел очаг кругом жаркова?"

М. Ломоносов

Еще в глубокой древности, наблюдая за Солнцем, люди обнаружили, что его полуденная высота в течение года меняется, как меняется и вид звездного неба.

Перемещение Солнца среди звезд – явление кажущееся.

Выражение «путь Солнца среди звезд» кому-то покажется странным. Ведь днем звезд не видно. Трудно заметить движение Солнца среди звезд – ведь оно светит днем, «когда и так светло», как говаривал незабвенный Козьма Прутков. Поэтому нелегко заметить, что Солнце среди звезд медленно перемещается.

Происходит это вследствие годичного обращения Земли вокруг Солнца.

На основе наблюдений сезонного изменения звездного неба был сделан вывод о том, что Солнце перемещается по небу, переходя из одного созвездия в другое, и завершает полный оборот в течение года.

Круг небесной сферы, по которому происходит видимое годичное движение Солнца, назвали эклиптикой .

Звездный год – это период оборота Солнца по эклиптике.

Пронаблюдать по ПКЗН, как Солнце перемещается по зодиакальным созвездиям в течение года.

Для этого провести линию «Земля – Солнце – созвездие».

Так как точка весеннего равноденствия медленно перемещается среди звезд вследствие прецессии земной оси, Солнце проходит свой годовой путь не через 12, а через 13 созвездий.

Обратить внимание, когда Солнце находится в каком-либо созвездии, это созвездие в данном месяце не видно. Оно находится над нами днем.

По ПКЗН определите, в каком созвездии находится Солнце

Сегодня

В ваш день рождения.

Работа с моделью небесной сферы (НС) и с подвижной картой звездного неба (ПКЗН).

    Повторение: Рассмотреть основные точки и линии НС: зенит, надир, отвесная линия, полюс мира, ось мира, небесный меридиан, небесный экватор, полуденная линия, математический горизонт, точки: запад, восток, север, юг, точки весеннего и осеннего равноденствия, летнего и зимнего солнцестояния.

    Показать эти точки и линии на небесной сфере и подвижной карте звездного неба.

Тропический год – промежуток времени между двумя последовательными прохождениями Солнца через точку весеннего равноденствия.

Из-за прецессии земной оси продолжительность тропического года меньше, чем продолжительность звездного года.

За работу с небесной сферой и ПКЗН поставить оценки учащимся.

На НС показать:

Наклон плоскости эклиптики и плоскости небесного экватора,

Наклон земной оси к плоскости эклиптики.

На ПКЗН найти точки весеннего и осеннего равноденствия, в которых пересекаются плоскости эклиптики и небесного экватора. Эклиптика на ПКЗН.

По ПКЗН определить, как изменяются экваториальные координаты Солнца в течение года.

По ПКЗН определить экваториальные координаты Солнца и заполнить таблицу:

Созвездие

Близнецы

При объяснении пользоваться схемой «Смена времен года» и глобусом Земли

Климат определяется наклоном земной оси к плоскости эклиптики.

Показать основные точки и линии земной орбиты.

Вопрос:

    В какой точке скорость движения Земли вокруг Солнца больше, а в какой меньше?

    Когда Земля получает от Солнца больше энергии?

Вопрос: Что длиннее: лето или зима.

    Рассмотреть для жителей Северного полушария Земли.

    Рассмотреть для жителей Южного полушария Земли.

Вывод:

    Весна и лето в северном полушарии Земли на 6 суток продолжительнее, чем осень и зима.

    Летом мы живем дольше.

Сформулировать вывод для южного полушария Земли:

1. Зима и осень в Южном полушарии продолжительнее на 6 суток, чем весна и лето

Для Северного полушария Земли:

    Когда в Северном полушарии Земли зима, Земля к Солнцу ближе – поэтому и энергии Земля получает от Солнца больше. Значит, зима будет менее суровая.

    Когда в Северном полушарии Земли лето, Земля от Солнца дальше – поэтому и энергии Земля получает от Солнца меньше.

    Значит в Северном полушарии лето прохладнее, а зима теплее, чем в Южном.

Сформулировать самостоятельно вывод для южного полушария Земли.

    Когда в Северном полушарии зима, в Южном – лето, Земля в это время к Солнцу ближе, энергии от Солнца больше. Лето в Южном полушарии теплее, а зима холоднее. Самая низкая температура в Антарктиде.

    Но зима в Южном полушарии продолжительнее, чем лето на 6 суток.

    Из-за наклона земной оси к плоскости эклиптики Южное полушарие получает солнечной энергии меньше, чем Северное.

    Полярная шапка Южного полушария больше, чем Северного.

Общий вывод: в Северном полушарии Земли теплее, чем в Южном.

Фронтальный опрос по уроку:

    Почему в настоящее время зодиакальных созвездий стало 13? Какие это созвездия?

В течение года Солнце проходит через зодиакальные созвездия.

Показать презентацию «Мифы и легенды о зодиакальных созвездиях».

Домашнее задание: § 6, задание 9.

Творческое задание: подготовить сообщения-презентации «Рефракция солнечных лучей в атмосфере Земли», «Белые ночи».

Урок № 2. Суточный путь Солнца.

Ход урока

1. Постановка целей и задач урока

2. Проверка домашнего задания

Фронтальный опрос.

3. Изучение нового материала с элементами повторения пройденного.

4. Сообщения – презентации учащихся «Что такое рефракция солнечных лучей», «Белые ночи»

5. Закрепление изученного материала.

Выводы по уроку.

6. Тест «Движение Солнца»

7. Домашнее задание.

8. Выставление оценок за работу на уроке

Фронтальный опрос:

    Почему полуденная высота Солнца в течение года меняется?

    В каком направлении происходит видимое годичное движение Солнца относительно звезд?

    Что такое тропический год, звездный год?

    В чем отличие зодиакальных созвездий и знаков зодиака?

    Чем определяется климат на Земле?

    В каком полушарии земли теплее: Северном или Южном?

Повторить основные элементы НС: эклиптика, точки весеннего и осеннего равноденствия, эклиптика, небесный экватор, небесный меридиан, полуденная линия.

При своем суточном движении Солнце, как и все светила, дважды пересекает небесный меридиан – над точками юга и севера.

Момент пересечения небесного меридиана называется кульминацией светила.

В момент верхней кульминации над точкой юга Солнце достигает наибольшей высоты над горизонтом, случается в полдень по местному времени.

Нижняя кульминация происходит над точкой севера в полночь.

Высота Солнца над горизонтом меняется из-за наклона земной оси к плоскости орбиты.

Высота Солнца над горизонтом связана со склонением Солнца в данный момент времени и географической широтой места наблюдения.

Для наблюдателя, находящегося в северном полушарии Земли максимальная высота Солнца над горизонтом 22 июня, минимальная - 22 декабря.

21 марта и 23 сентября Солнце находится на небесном экваторе и имеет склонение 0º. Оба полушария Земли освещаются Солнцем одинаково: граница дня и ночи проходит точно через полюса, и день равен ночи во всех пунктах Земли.

Рассмотрим суточные пути Солнца на различных широтах в течение года с помощью модели небесной сферы и глобуса Земли.

Самостоятельно определить, как происходит суточное движение Солнца на различных широтах южного полушария Земли.

Сообщения - презентации учащихся:

    Что такое рефракция солнечных лучей?

    Белые ночи.

Вопрос: Какие явления связаны с рефракцией солнечных лучей в атмосфере?

    Видимая высота Солнца всегда больше действительной.

    На закате Солнце сплюснуто.

Выводы о суточном движении Солнца

Региональный компонент:

    Объяснить продолжительность дня и ночи в разное время года для нашей местности.

    Почему в городе Миассе мы не наблюдаем белые ночи?

Домашнее задание: § 6, упражнение 5.

Тест «Движение Солнца»

Поставить учащимся оценки за работу на уроке.

Урок № 3. Движение и фазы Луны

Ход урока

1. Постановка целей и задач урока

2. Проверка домашнего задания

3. Изучение нового материала

4. Закрепление изученного материала

5. Тест «Движение и фазы Луны»

6. Поставить оценки учащимся за работу на уроке

7. Домашнее задание

Известно, что Луна меняет свой вид. Сама она не излучает света, поэтому на небе видна только освещенная Солнцем поверхность – дневная сторона.

Луна – ближайшее к Земле небесное тело, ее единственный спутник.

Луна обращается вокруг Земли в том же направлении, в котором Земля вращается вокруг своей оси.

Перемещаясь по небу с запада на восток, Луна догоняет и перегоняет Солнце.

По мере движения Луны вокруг Земли ее внешний вид меняется – происходит смена лунных фаз.

Лимб – видимый край диска Луны.

Терминатор – линия, разделяющая освещенную и неосвещенную поверхности Луны.

Фазовый угол - угол между направлениями от Солнца к Луне и от Луны к Земле называется.

Фаза Луны – это отношение площади освещенной части видимого диска Луны ко всей его площади.

Различают четыре основные фазы Луны: новолуние, первая четверть, полнолуние, последняя четверть.

Начертить в тетради схему смены лунных фаз и таблицу «Фазы Луны»

В какое время суток Луна бывает над горизонтом, каким мы видим обращенное к Земле полушарие Луны – полностью освещенным или освещенным частично – все это зависит от положения Луны на орбите.

Новолуние – начало лунного месяца.

Луна находится в том же направлении, что и Солнце, только выше или ниже его, и повернута к Земле неосвещенным полушарием. Луна не видна.

Через два-три дня Луна появляется на западе на фоне вечерней зари в виде узкого серпика, обращенного выпуклостью вправо – растущий месяц.

Иногда можно наблюдать пепельный свет Луны.

Первая четверть - солнечные лучи освещают только правую половину лунного диска. После захода Солнца Луна находится в южной стороне неба и заходит около полуночи.

Поразительна красота Луны в полнолуние, когда ее поверхность максимально отражает солнечные лучи на ночную Землю. Неудивительно, что в народных сказках и преданиях влиянию Луны на все земное в этот период приписывали магические свойства.

Через неделю опять становится видимой только половина лунного диска, но это уже левая его часть. Наступает последняя четверть. Луна восходит около полуночи и светит до утра. К восходу Солнца Луна находится в южной стороне неба. В таком виде мы можем наблюдать Луну даже днем в юго-западной части неба.

Ширина лунного серпа продолжает уменьшаться, а сама Луна постепенно приближается к Солнцу с правой стороны. Через некоторое время она опять невидима.

Фазы новолуния и полнолуния называют сизигиями от греческого слова «сизигия» - соединение.

От новолуния до полнолуния Луну называют молодой, так как она как бы «растет» с каждым днем, а от полнолуния до новолуния – старой, так как она «убывает».

Как отличить убывающую Луну от растущей?

Правило для северного полушария: если вид лунного серпа представляет собой букву С , то Луна старая , а если, пририсовав мысленно палочку слева от диска, увидите букву Р , то это Луна растущая .

Сидерический (звездный) месяц – один полный оборот Луны вокруг Земли.

Синодический месяц – промежуток времени между последовательными одноименными фазами Луны.

Синодический месяц больше сидерического, так как Земля вместе с Луной обращается вокруг Солнца. Совершив один оборот вокруг Земли за 27,3 суток, Луна возвращается на свое место среди звезд. Но Солнце уже переместилось за это время по эклиптике к востоку. Чтобы Луна догнала Солнце, требуется еще 2,2 суток.

Рассмотреть условия видимости Луны в разные фазы.

Путь Луны по небу проходит недалеко от эклиптики, поэтому полная Луна поднимается из-за горизонта при заходе Солнца и приближенно повторяет путь, пройденный им за полгода до этого.

Летом Солнце поднимается на небе высоко, полная же Луна не удаляется далеко от горизонта.

Зимой Солнце стоит низко, а Луна, напротив, поднимается высоко и долго освещает зимние пейзажи, придавая снегу синий оттенок.

С Земли видна лишь одна сторона Луны, но это не означает, что она не вращается вокруг своей оси.

Провести опыт с глобусом Луны, перемещая его вокруг глобуса Земли так, чтобы к нему всегда была обращена одна сторона лунного глобуса. Период обращения Луны вокруг оси равен периоду обращения Луны вокруг Земли.

Вопрос: Происходит ли на Луне смена дня и ночи?

Две недели – день и две недели - ночь

С Земли наблюдается только видимая часть Луны. Но это не 50 % поверхности, а несколько больше.

Луна обращается вокруг Земли по эллипсу, около перигея Луна движется быстрее, а около апогея – медленнее. Но вокруг оси Луна вращается равномерно. Вследствие этого возникает либрация по долготе. Возможная наибольшая величина ее составляет 7°54´.

Либрация по широте возникает от наклона оси вращения Луны к плоскости ее орбиты и сохранения направления оси в пространстве при движении Луны. Величина либрации составляет 6 °50´.

Благодаря либрации мы имеем возможность наблюдать с Земли кроме видимой стороны Луны еще и примыкающие к ней узкие полоски территории обратной ее стороны. В общей сложности с Земли можно увидеть 59 % лунной поверхности.

В своем движении вокруг Земли Луна периодически заслоняет своим диском различные более далекие светила. Это явление называется покрытием светил Луной.

Такие моменты рассчитываются и используются для уточнения параметров орбиты Луны.

Чаще всего происходят покрытия звезд, реже случаются покрытия планет.

По фотографиям определите, в какой фазе находится Луна и объясните условия ее видимости

Закрепление изученного материала:

    В каких пределах изменяется угловое расстояние Луны от Солнца?

    Как по фазе Луны определить ее примерное угловое расстояние от Солнца?

    На какую примерно величину меняется прямое восхождение Луны за неделю?

    Какие наблюдения необходимо провести, чтобы заметить движение Луны вокруг Земли?

    Какие наблюдения показывают, что на Луне происходит смена дня и ночи?

    Почему пепельный свет Луны слабее, чем свечение остальной части Луны, видимой вскоре после новолуния?

Домашнее задание: § 7, упражнение 6.

Web -сайт «Видимое движение Солнца и Луны»

Структура web -сайта:

    Пояснительная записка

    Лента истории

На этой web-странице представлены в хронологическом порядке исторические сведения по изучению вопроса видимого движения Солнца, Луны и планет. К этой странице можно обращаться как к справочному материалу.

    Видимое движение Солнца

    1. Презентация «Суточный путь Солнца»

      Презентация «Годовой путь Солнца по эклиптике»

      Презентация «Мифы и легенды о зодиакальных созвездиях»

      Тест «Движение Солнца»

    Движение и фазы Луны

    1. Презентация «Движение и фазы Луны»

      Тест «Движение и фазы Луны»

На этой web-странице помещены все тестовые задания, которые используются в данной методической разработке для контроля знаний учащихся.

7.1. Тест «Движение Солнца»

7.2. Тест «Движение и фазы Луны»

8. Источники

Здесь представлены все электронные ресурсы и печатные издания, которые были использованы при составлении методической разработки.

Навигация по сайту очень удобна и понятна.

Заключение

Я считаю, что методическая разработка по астрономии «Видимое движение Солнца, Луны и планет» актуальна, эффективна, удобна и достаточно интересна и для учителей и для учащихся.

Ожидаемый результат:

    Повышение качества преподавания учителя через использование наглядных пособий нового поколения, формирование новых способов организации учебного процесса.

    Рост качества знаний учащихся, включение их в учебную деятельность творческого характера, развитие творческого, теоретического мышления у учащихся, а также формирование, так называемого, операционного мышления, направленного на выбор оптимальных решений.

    Повышение мотивации к учению, интереса к изучаемому предмету.

Использование новых технологий позволяет:

    организовать разнообразные формы деятельности обучающихся по самостоятельному извлечению и представлению знаний;

    применять весь спектр возможностей современных информационных и телекоммуникационных технологий в процессе выполнения разнообразных видов учебной деятельности, в том числе, таких как регистрация, сбор, хранение, обработка информации, интерактивный диалог, моделирование объектов, явлений, процессов.

    управлять учебной деятельностью обучающихся адекватно интеллектуальному уровню конкретного учащегося, уровню его знаний, умений, навыков, особенностям его мотивации с учетом реализуемых методов и используемых средств обучения.

Данная методическая разработка может быть использована:

    учителями при объяснении нового материала, проверке и закреплении знаний,

    при дистанционном методе обучения,

    учащимися при самостоятельном изучении темы.

Литература и электронные пособия

    Воронцов - Вельяминов Б.А. Астрономия, 11 кл.: Учеб для общеобразоват. учреждений/ Б. А. Воронцов - Вельяминов, Е.К. Страут, - М.: Дрофа, 2005.

    лунные ...

  • " астрономия как наука"

    Исследование

    ... движения Солнца и Луны и на ее основе - методы предвычисления затмений. Гиппарх обнаружил, что видимое движение Солнца и Луны ... нас трактатов по астрономии . Разработку нового календаря... как микроорганизмы. В методическом отношении экзобиология находится...

  • Методические рекомендации

    ПО АСТРОНОМИИ О.С. Угольников МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ по разработке заданий для школьного и... Видимые движения по диску Солнца ...

  • Всероссийская олимпиада школьников по астрономии методические рекомендации по разработке заданий для школьного и муниципального этапов всероссийской олимпиады школьников в 2011/2012 учебном году

    Методические рекомендации

    ... Видимые движения и конфигурации планет. Наклонение орбиты, линия узлов. Прохождения планет по диску Солнца ... и дифракции. ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО АСТРОНОМИИ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ по разработке требований к проведению школьного и...

  • Всероссийская олимпиада школьников по астрономии методические рекомендации по разработке заданий для школьного и муниципального этапов всероссийской олимпиады школьников в 2010/2011 учебном году

    Методические рекомендации

    ВСЕРОССИЙСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО АСТРОНОМИИ О.С. Угольников МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ по разработке заданий для школьного и... Видимые движения и конфигурации планет. Наклонение орбиты, линия узлов. Прохождения планет по диску Солнца ...